Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 474(4): 447-454, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34623515

RESUMEN

This study describes the interaction between CaV3.2 calcium channels and the receptor for activated C kinase 1 (Rack-1), a scaffold protein which has recently been implicated in neuropathic pain. The coexpression of CaV3.2 and Rack-1 in tsA-201 cells led to a reduction in the magnitude of whole-cell CaV3.2 currents and CaV3.2 channel expression at the plasma membrane. Co-immunoprecipitations from transfected cells show the formation of a molecular protein complex between Cav3.2 channels and Rack-1. We determined that the interaction of Rack-1 occurs at the intracellular II-III loop and the C-terminus of the channel. Finally, the coexpression of PKCßII abolished the effect of Rack-1 on current densities. Altogether, our findings show that Rack-1 regulates CaV3.2-mediated calcium entry in a PKC-dependent manner.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia , Canales de Calcio Tipo T/metabolismo , Membrana Celular/metabolismo , Humanos , Receptores de Cinasa C Activada/metabolismo
2.
Am J Hum Genet ; 103(5): 666-678, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343943

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.


Asunto(s)
Canales de Calcio Tipo R/genética , Proteínas de Transporte de Catión/genética , Contractura/genética , Discinesias/genética , Epilepsia/genética , Variación Genética/genética , Megalencefalia/genética , Espasmos Infantiles/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/genética
4.
Mol Pain ; 13: 1744806917724698, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28741432

RESUMEN

Abstract: We recently reported that nerve injury or peripheral inflammation triggers an upregulation of the deubiquitinase, USP5 in mouse dorsal root ganglion and spinal dorsal horn. This leads to dysregulated ubiquitination of Cav3.2 T-type calcium channels, thus increasing Cav3.2 channel plasma membrane expression and nociceptive signaling in the primary afferent pain pathway. This phenomenon could be recapitulated by noninvasive, optogenetic activation of transient receptor potential vanilloid-1­expressing nociceptors, indicating that neuronal activity is a key player in this process. Given the relevance of the pro-inflammatory cytokine interleukin-1 beta in many forms of pathological pain, we hypothesized that interleukin-1 beta may be a critical cofactor required to drive upregulation of interactions between USP5 and Cav3.2 channels. Here, we report that gene expression, as well as protein levels for interleukin-1 beta and the endogenous interleukin-1 receptor-I antagonist, IL-1Ra are unaltered following conditioning stimulation of optogenetically targeted cutaneous nociceptors, indicating that neuronal activity is not a driver of interleukin-1 beta signaling. In contrast, co-immunoprecipitation experiments revealed that intrathecal administration of interleukin-1 beta in wild-type mice led to an increase in the interaction between USP5 and Cav3.2 in the spinal dorsal horn. Moreover, disruption of the interaction between USP5 and Cav3.2 with TAT peptides suppressed acute nocifensive responses produced by interleukin-1 beta, which was similar to that achieved by elimination of T-type channel activity with the channel blockers, mibefradil, or TTA-A2. Finally, this upregulation could be maintained in dorsal root ganglion neuron cultures exposed overnight to interleukin-1 beta, while the copresence of interleukin-1 receptor antagonist or the dampening of neuronal cell activity with tetrodotoxin attenuated this response. Altogether, our findings identify interleukin-1 beta as an upstream trigger for the upregulation of interactions between USP5 and Cav3.2 channels in the pain pathway, presumably by triggering increased firing activity in afferent fibers.


Asunto(s)
Canales de Calcio Tipo T/genética , Interleucina-1beta/metabolismo , Dolor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Canales de Calcio Tipo T/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuralgia/metabolismo , Neuronas/metabolismo , Nociceptores/metabolismo , Regulación hacia Arriba
6.
Pflugers Arch ; 468(4): 635-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26706850

RESUMEN

We report expression system-dependent effects of heterozygous mutations (P769L and A1059S) in the Cav3.2 CACNA1H gene identified in a pediatric patient with chronic pain and absence seizures. The mutations were introduced individually into recombinant channels and then analyzed by means of electrophysiology. When both mutants were co-expressed in tsA-201 cells, we observed a loss of channel function, with significantly smaller current densities across a wide range of voltages (-40 to +20 mV). In addition, when both mutant channels were co-expressed, the channels opened at a more depolarizing potential with a ~5-mV right shift in the half-activation potential, with no changes in half-inactivation potential and the rate of recovery from inactivation. Interestingly, when both mutants were co-expressed in the neuronal-derived CAD cells in a different extracellular milieu, the effect was remarkably different. Although not statistically significant (p < 0.07), current densities appeared augmented compared to wild-type channels and the difference in the half-activation potential was lost. This could be attributed to the replacement of extracellular sodium and potassium with tetraethylammonium chloride. Our results show that experimental conditions can be a confounding factor in the biophysical effects of T-type calcium channel mutations found in certain neurological disorders.


Asunto(s)
Canales de Calcio Tipo T/genética , Dolor Crónico/genética , Epilepsia Tipo Ausencia/genética , Activación del Canal Iónico , Mutación Missense , Potenciales de Acción , Adolescente , Canales de Calcio Tipo T/metabolismo , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Epilepsia Tipo Ausencia/complicaciones , Epilepsia Tipo Ausencia/metabolismo , Femenino , Células HEK293 , Humanos
7.
Pflugers Arch ; 467(4): 677-86, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24862738

RESUMEN

The L-type voltage-gated calcium channel Cav1.2 and the calcium-activated CaM kinase cascade both regulate excitation transcription coupling in the brain. CaM kinase is known to associate with the C terminus of Cav1.2 in a region called the PreIQ-IQ domain, which also binds multiple calmodulin molecules. Here we identify and characterize a second CaMKII binding site in the N terminus of Cav1.2 that is formed by a stretch of four amino residues (cysteine-isoleucine-serine-isoleucine) and which regulates channel expression and function. By using live cell imaging of tsA-201 cells we show that GFP fusion constructs of the CaMKII binding region, termed N2B-II co-localize with mCherry-CaMKII. Mutating CISI to AAAA ablates binding to and colocalization with CaMKII. Cav1.2-AAAA channels show reduced cell surface expression in tsA-201 cells, but interestingly, display an increase in channel function that offsets the trafficking deficit. Altogether our data reveal that the proximal N terminus of Cav1.2 contains a CaMKII binding region which contributes to channel surface expression and function.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo L/química , Membrana Celular/metabolismo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Ratas
8.
PLoS Biol ; 9(11): e1001194, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22087075

RESUMEN

Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT) from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN) and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.


Asunto(s)
Acetilcolina/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Western Blotting , Encéfalo , Catecolaminas/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas In Vitro , Imagen por Resonancia Magnética , Masculino , Ratones , Actividad Motora/genética , Actividad Motora/fisiología , Reacción en Cadena de la Polimerasa , Sinaptosomas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética
9.
Mol Brain ; 17(1): 54, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113108

RESUMEN

NVA1309 is a non-brain penetrant next-generation gabapentinoid shown to bind Cavα2δ at R243 within a triple Arginine motif forming the binding site for gabapentin and pregabalin. In this study we have compared the effects of NVA1309 with Mirogabalin, a gabapentinoid drug with higher affinity for the voltage-gated calcium channel subunit Cavα2δ-1 than pregabalin which is approved for post-herpetic neuralgia in Japan, Korea and Taiwan. Both NVA1309 and mirogabalin inhibit Cav2.2 currents in vitro and decrease Cav2.2 plasma membrane expression with higher efficacy than pregabalin. Mutagenesis of the classical binding residue arginine R243 and the newly identified binding residue lysine K615 reverse the effect of mirogabalin on Cav2.2 current, but not that of NVA1309.


Asunto(s)
Gabapentina , Humanos , Gabapentina/farmacología , Animales , Unión Proteica , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química , Células HEK293 , Ácido gamma-Aminobutírico/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Pregabalina/farmacología , Canales de Calcio/metabolismo , Compuestos Bicíclicos con Puentes
10.
Biomed Pharmacother ; 174: 116472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531121

RESUMEN

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Asunto(s)
Canales de Calcio Tipo L , Neuralgia , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Animales , Ligandos , Humanos , Masculino , Canales de Calcio/metabolismo , Canales de Calcio/genética , Gabapentina/farmacología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ratas , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Analgésicos/farmacología , Modelos Animales de Enfermedad , Pregabalina/farmacología
11.
Br J Pharmacol ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295452

RESUMEN

BACKGROUND AND PURPOSE: The chemotherapy agent oxaliplatin can give rise to oxaliplatin-induced peripheral neuropathy (OIPN). Here, we investigated whether T-type calcium channels (Cav3) contribute to OIPN. EXPERIMENTAL APPROACH: We chronically treated mice with oxaliplatin and assessed pain responses and changes in expression of Cav3.2 calcium channels. We also tested the effects of T-type channel blockers on cold sensitivity in wild-type and Cav3.2 null mice. KEY RESULTS: Oxaliplatin treatment led to mechanical and cold hypersensitivity in male and female mice. Mechanical hypersensitivity persisted in Cav3.2 null mice of both sexes. Intraperitoneal or intrathecal delivery of pan T-type channel inhibitors attenuated mechanical hypersensitivity in wild-type but not Cav3.2 null mice. Remarkably cold hypersensitivity occurred in female but not male Cav3.2 null mice even without oxaliplatin treatment. Unexpectedly, intrathecal, intraplantar or intraperitoneal delivery of T-type channel inhibitors Z944 or TTA-P2 transiently induced cold hypersensitivity in both male and female wild-type mice. Acute knockdown of specific Cav3 isoforms revealed that the depletion of Cav3.1 in males and depletion of either Cav3.1 or Cav3.2 in females triggered cold hypersensitivity. Finally, reducing Cav3.2 expression by disrupting the interactions between Cav3.2 and the deubiquitinase USP5 with the small organic molecule II-2 reversed oxaliplatin-induced mechanical and cold hypersensitivity and importantly did not trigger cold allodynia. CONCLUSION AND IMPLICATIONS: Altogether, our data indicate that T-type channels differentially contribute to the regulation of cold and mechanical hypersensitivity, and raise the possibility that T-type channel blockers could promote cold allodynia.

12.
Br J Pharmacol ; 180(12): 1616-1633, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647671

RESUMEN

BACKGROUND AND PURPOSE: Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH: Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS: HU-210 (1 µM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 µM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS: Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.


Asunto(s)
Cannabidiol , Cannabinoides , Dolor Crónico , Masculino , Femenino , Ratones , Animales , Cannabidiol/farmacología , Canales de Calcio , Dolor Crónico/tratamiento farmacológico , Analgésicos/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
13.
Pain ; 163(12): 2315-2325, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35467587

RESUMEN

ABSTRACT: Trigeminal neuralgia (TN) is a rare but debilitating disorder characterized by excruciating facial pain, with a higher incidence in women. Recent studies demonstrated that TN patients present mutations in the gene encoding the Ca V 3.2 T-type calcium channel, an important player in peripheral pain pathways. We characterize the role of Ca V 3.2 channels in TN at 2 levels. First, we examined the biophysical properties of CACNA1H variants found in TN patients. Second, we investigated the role of Ca V 3.2 in an animal model of trigeminal neuropathic pain. Whole-cell patch-clamp recordings from 4 different mutants expressed in tsA-201 cells (E286K in the pore loop of domain I, H526Y, G563R, and P566T in the domain I-II linker) identified a loss of function in activation in the E286K mutation and gain of function in the G563R and P566T mutations. Moreover, a loss of function in inactivation was observed with the E286K and H526Y mutations. Cell surface biotinylation revealed no difference in channel trafficking among the variants. The G563R mutant also caused a gain of function in the firing properties of transfected trigeminal ganglion neurons. In female and male mice, constriction of the infraorbital nerve induced facial thermal heat hyperalgesia. Block of T-type channels with Z944 resulted in antihyperalgesia. The effect of Z944 was absent in Ca V 3.2 -/- mice, indicating that Ca V 3.2 is the molecular target of the antihyperalgesic Z944 effect. Finally, enzyme-linked immunosorbent assay analysis revealed increased Ca V 3.2 channel expression in the spinal trigeminal subnucleus caudalis. Altogether, the present study demonstrates an important role of Ca V 3.2 channels in trigeminal pain.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia del Trigémino , Animales , Femenino , Masculino , Ratones , Dolor Facial , Hiperalgesia , Ganglio del Trigémino/metabolismo , Neuralgia del Trigémino/genética , Canales de Calcio Tipo T/metabolismo
14.
Mol Brain ; 15(1): 91, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397158

RESUMEN

Trigeminal neuralgia (TN) is a rare form of chronic neuropathic pain characterized by spontaneous or elicited paroxysms of electric shock-like or stabbing pain in a region of the face. While most cases occur in a sporadic manner and are accompanied by intracranial vascular compression of the trigeminal nerve root, alteration of ion channels has emerged as a potential exacerbating factor. Recently, whole exome sequencing analysis of familial TN patients identified 19 rare variants in the gene CACNA1H encoding for Cav3.2T-type calcium channels. An initial analysis of 4 of these variants pointed to a pathogenic role. In this study, we assessed the electrophysiological properties of 13 additional TN-associated Cav3.2 variants expressed in tsA-201 cells. Our data indicate that 6 out of the 13 variants analyzed display alteration of their gating properties as evidenced by a hyperpolarizing shift of their voltage dependence of activation and/or inactivation resulting in an enhanced window current supported by Cav3.2 channels. An additional variant enhanced the recovery from inactivation. Simulation of neuronal electrical membrane potential using a computational model of reticular thalamic neuron suggests that TN-associated Cav3.2 variants could enhance neuronal excitability. Altogether, the present study adds to the notion that ion channel polymorphisms could contribute to the etiology of some cases of TN and further support a role for Cav3.2 channels.


Asunto(s)
Neuralgia del Trigémino , Humanos , Canales de Calcio , Potenciales de la Membrana , Neuronas , Neuralgia del Trigémino/genética , Fenómenos Electrofisiológicos
15.
Mol Brain ; 14(1): 145, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544471

RESUMEN

The CACNA1H gene encodes the α1 subunit of the low voltage-activated Cav3.2 T-type calcium channel, an important regulator of neuronal excitability. Alternative mRNA splicing can generate multiple channel variants with distinct biophysical properties and expression patterns. Two major splice variants, containing or lacking exon 26 (± 26) have been found in different human tissues. In this study, we report splice variant specific effects of a Cav3.2 mutation found in patients with autosomal dominant writer's cramp, a specific type of focal dystonia. We had previously reported that the R481C missense mutation caused a gain of function effect when expressed in Cav3.2 (+ 26) by accelerating its recovery from inactivation. Here, we show that when the mutation is expressed in the short variant of the channel (- 26), we observe a significant increase in current density when compared to wild-type Cav3.2 (- 26) but the effect on the recovery from inactivation is lost. Our data add to growing evidence that the functional expression of calcium channel mutations depends on which splice variant is being examined.


Asunto(s)
Canales de Calcio Tipo T/genética , Trastornos Distónicos/genética , Potenciales de Acción , Empalme Alternativo , Bario/metabolismo , Canales de Calcio Tipo T/fisiología , Trastornos Distónicos/fisiopatología , Exones/genética , Mutación con Ganancia de Función , Humanos , Transporte Iónico , Modelos Moleculares , Mutación Missense , Mutación Puntual , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología
16.
Mol Brain ; 14(1): 4, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413531

RESUMEN

A novel missense mutation in the CACNA1A gene that encodes the pore forming α1 subunit of the CaV2.1 voltage-gated calcium channel was identified in a patient with trigeminal neuralgia. This mutation leads to a substitution of proline 2455 by histidine (P2455H) in the distal C-terminus region of the channel. Due to the well characterized role of this channel in neurotransmitter release, our aim was to characterize the biophysical properties of the P2455H variant in heterologously expressed CaV2.1 channels. Whole-cell patch clamp recordings of wild type and mutant CaV2.1 channels expressed in tsA-201 cells reveal that the mutation mediates a depolarizing shift in the voltage-dependence of activation and inactivation. Moreover, the P2455H mutant strongly reduced calcium-dependent inactivation of the channel that is consistent with an overall gain of function. Hence, the P2455H CaV2.1 missense mutation alters the gating properties of the channel, suggesting that associated changes in CaV2.1-dependent synaptic communication in the trigeminal system may contribute to the development of trigeminal neuralgia.


Asunto(s)
Canales de Calcio/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Activación del Canal Iónico/genética , Neuralgia del Trigémino/genética , Línea Celular , Humanos , Mutación/genética
17.
Mol Brain ; 14(1): 27, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557884

RESUMEN

CACNA1A pathogenic variants have been linked to several neurological disorders including familial hemiplegic migraine and cerebellar conditions. More recently, de novo variants have been associated with severe early onset developmental encephalopathies. CACNA1A is highly expressed in the central nervous system and encodes the pore-forming CaVα1 subunit of P/Q-type (Cav2.1) calcium channels. We have previously identified a patient with a de novo missense mutation in CACNA1A (p.Y1384C), characterized by hemiplegic migraine, cerebellar atrophy and developmental delay. The mutation is located at the transmembrane S5 segment of the third domain. Functional analysis in two predominant splice variants of the neuronal Cav2.1 channel showed a significant loss of function in current density and changes in gating properties. Moreover, Y1384 variants exhibit differential splice variant-specific effects on recovery from inactivation. Finally, structural analysis revealed structural damage caused by the tyrosine substitution and changes in electrostatic potentials.


Asunto(s)
Canales de Calcio Tipo N/genética , Cerebelo/patología , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Migraña con Aura/genética , Mutación/genética , Adolescente , Adulto , Empalme Alternativo/genética , Atrofia , Fenómenos Biofísicos , Canales de Calcio Tipo N/química , Canales de Calcio Tipo N/metabolismo , Línea Celular , Preescolar , Discapacidades del Desarrollo/complicaciones , Femenino , Humanos , Recién Nacido , Activación del Canal Iónico , Masculino , Migraña con Aura/complicaciones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Isoformas de Proteínas/genética , Estructura Secundaria de Proteína , Homología Estructural de Proteína
18.
Mol Brain ; 14(1): 126, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399820

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies that are characterized by seizures and developmental delay. DEEs are primarily attributed to genetic causes and an increasing number of cases have been correlated with variants in ion channel genes. In this study, we report a child with an early severe DEE. Whole exome sequencing showed a de novo heterozygous variant (c.4873-4881 duplication) in the SCN8A gene and an inherited heterozygous variant (c.952G > A) in the CACNA1H gene encoding for Nav1.6 voltage-gated sodium and Cav3.2 voltage-gated calcium channels, respectively. In vitro functional analysis of human Nav1.6 and Cav3.2 channel variants revealed mild but significant alterations of their gating properties that were in general consistent with a gain- and loss-of-channel function, respectively. Although additional studies will be required to confirm the actual pathogenic involvement of SCN8A and CACNA1H, these findings add to the notion that rare ion channel variants may contribute to the etiology of DEEs.


Asunto(s)
Discapacidades del Desarrollo/genética , Epilepsia Refractaria/genética , Epilepsia Tónico-Clónica/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Anomalías Múltiples/genética , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/fisiología , Femenino , Mutación con Ganancia de Función , Duplicación de Gen , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.6/fisiología , Linaje , Mutación Puntual , Escoliosis/genética
19.
Mol Brain ; 14(1): 18, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478561

RESUMEN

Writer's cramp (WC) is a task-specific focal dystonia that occurs selectively in the hand and arm during writing. Previous studies have shown a role for genetics in the pathology of task-specific focal dystonia. However, to date, no causal gene has been reported for task-specific focal dystonia, including WC. In this study, we investigated the genetic background of a large Dutch family with autosomal dominant‒inherited WC that was negative for mutations in known dystonia genes. Whole exome sequencing identified 4 rare variants of unknown significance that segregated in the family. One candidate gene was selected for follow-up, Calcium Voltage-Gated Channel Subunit Alpha1 H, CACNA1H, due to its links with the known dystonia gene Potassium Channel Tetramerization Domain Containing 17, KCTD17, and with paroxysmal movement disorders. Targeted resequencing of CACNA1H in 82 WC cases identified another rare, putative damaging variant in a familial WC case that did not segregate. Using structural modelling and functional studies in vitro, we show that both the segregating p.Arg481Cys variant and the non-segregating p.Glu1881Lys variant very likely cause structural changes to the Cav3.2 protein and lead to similar gains of function, as seen in an accelerated recovery from inactivation. Both mutant channels are thus available for re-activation earlier, which may lead to an increase in intracellular calcium and increased neuronal excitability. Overall, we conclude that rare functional variants in CACNA1H need to be interpreted very carefully, and additional studies are needed to prove that the p.Arg481Cys variant is the cause of WC in the large Dutch family.


Asunto(s)
Canales de Calcio Tipo T/genética , Trastornos Distónicos/genética , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Segregación Cromosómica , Femenino , Humanos , Masculino , Linaje , Fenotipo
20.
Mol Brain ; 13(1): 149, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176830

RESUMEN

Low-voltage-activated T-type calcium channels are important contributors to nervous system function. Post-translational modification of these channels has emerged as an important mechanism to control channel activity. Previous studies have documented the importance of asparagine (N)-linked glycosylation and identified several asparagine residues within the canonical consensus sequence N-X-S/T that is essential for the expression and function of Cav3.2 channels. Here, we explored the functional role of non-canonical N-glycosylation motifs in the conformation N-X-C based on site directed mutagenesis. Using a combination of electrophysiological recordings and surface biotinylation assays, we show that asparagines N345 and N1780 located in the motifs NVC and NPC, respectively, are essential for the expression of the human Cav3.2 channel in the plasma membrane. Therefore, these newly identified asparagine residues within non-canonical motifs add to those previously reported in canonical sites and suggest that N-glycosylation of Cav3.2 may also occur at non-canonical motifs to control expression of the channel in the plasma membrane. It is also the first study to report the functional importance of non-canonical N-glycosylation motifs in an ion channel.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Secuencias de Aminoácidos , Asparagina/metabolismo , Canales de Calcio Tipo T/química , Glicosilación , Humanos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA