Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 286(26): 22934-42, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540176

RESUMEN

NAADP is a potent second messenger that mobilizes Ca(2+) from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca(2+) release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca(2+)-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca(2+) influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca(2+) signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca(2+) signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca(2+) oscillations in pancreatic acinar cells were identical in wild-type and TRPML1(-/-) cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , NADP/análogos & derivados , Canales Catiónicos TRPM/metabolismo , Sustitución de Aminoácidos , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Endosomas/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/genética , Mutación Missense , NADP/genética , NADP/metabolismo , Páncreas Exocrino/metabolismo , Canales Catiónicos TRPM/genética , Canales de Potencial de Receptor Transitorio
2.
EMBO J ; 27(8): 1197-205, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18369318

RESUMEN

TRPML3 belongs to the TRPML subfamily of the transient receptor potential (TRP) channels. The A419P mutation in TRPML3 causes the varitint-waddler phenotype as a result of gain-of-function mutation (GOF). Regulation of the channels and the mechanism by which the A419P mutation leads to GOF are not known. We report here that TRPML3 is a Ca(2+)-permeable channel with a unique form of regulation by extracytosolic (luminal) H(+) (H(+)(e-cyto)). Regulation by H(+)(e-cyto) is mediated by a string of three histidines (H252, H273, H283) in the large extracytosolic loop between transmembrane domains (TMD) 1 and 2. Each of the histidines has a unique role, whereby H252 and H273 retard access of H(+)(e-cyto) to the inhibitory H283. Notably, the H283A mutation has the same phenotype as A419P and locks the channel in an open state, whereas the H283R mutation inactivates the channel. Accordingly, A419P eliminates regulation of TRPML3 by H(+)(e-cyto), and confers full activation to TRPML3(H283R). Activation of TRPML3 and regulation by H(+)(e-cyto) are altered by both the alpha-helix-destabilizing A419G and the alpha-helix-favouring A419M and A419K. These findings suggest that regulation of TRPML3 by H(+)(e-cyto) is due to an effect of the large extracytosolic loop on the orientation of fifth TMD and thus pore opening and show that the GOF of TRPML3(A419P) is due to disruption of this communication.


Asunto(s)
Citosol/fisiología , Fenotipo , Canales de Potencial de Receptor Transitorio/metabolismo , Sustitución de Aminoácidos/genética , Calcio/metabolismo , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Mucolipidosis/genética , Mucolipidosis/metabolismo , Estructura Terciaria de Proteína , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética
3.
Gastroenterology ; 140(3): 857-67, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21111738

RESUMEN

BACKGROUND & AIMS: Mutations in TRPML1, a lysosomal Ca(2+)-permeable TRP channel, lead to mucolipidosis type IV, a neurodegenerative lysosomal storage disease. An unusual feature of mucolipidosis type IV is constitutive achlorhydria. We produced Trpml1(-/-) (null) mice to investigate the requirement for this protein in gastric acid secretion. METHODS: Trpml1-null mice were generated by gene targeting. The expression of Trpml1 and its role in acid secretion by gastric parietal cells were analyzed using biochemical, histologic, and ultrastructural approaches. RESULTS: Trpml1 is expressed by parietal cells and localizes predominantly to the lysosomes; it was dynamically palmitoylated and dephosphorylated in vivo following histamine stimulation of acid secretion. Trpml1-null mice had significant impairments in basal and histamine-stimulated gastric acid secretion and markedly reduced levels of the gastric proton pump. Histologic and ultrastructural analyses revealed that Trpml1(-/-) parietal cells were enlarged, had multivesicular and multi-lamellated lysosomes, and maintained an abnormal intracellular canalicular membrane. The intralysosomal Ca(2+) content and receptor-mediated Ca(2+) signaling were, however, unaffected in Trpml1(-/-) gastric glands, indicating that Trpml1 does not function in the regulation of lysosomal Ca(2+). CONCLUSIONS: Loss of Trpml1 causes reduced levels and mislocalization of the gastric proton pump and alters the secretory canaliculi, causing hypochlorhydria and hypergastrinemia. The lysosomal enlargement and defective intracellular canaliculi formation observed in Trpml1(-/-) parietal cells indicate that Trpml1 functions in the formation and trafficking of the tubulovesicles. This study provides direct evidence for the regulation of gastric acid secretion by a TRP channel; TRPML1 is an important protein in parietal cell apical membrane trafficking.


Asunto(s)
Ácido Gástrico/metabolismo , Mucolipidosis/metabolismo , Células Parietales Gástricas/metabolismo , Canales Catiónicos TRPM/deficiencia , Aclorhidria/genética , Aclorhidria/metabolismo , Aclorhidria/fisiopatología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Gastrinas/sangre , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Histamina/metabolismo , Hipertrofia , Lipoilación , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucolipidosis/genética , Mucolipidosis/patología , Mucolipidosis/fisiopatología , Células Parietales Gástricas/ultraestructura , Fosforilación , Transporte de Proteínas , Canales Catiónicos TRPM/genética , Factores de Tiempo , Canales de Potencial de Receptor Transitorio
4.
Nat Cell Biol ; 7(4): 405-11, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15793568

RESUMEN

Signalling by G proteins is controlled by the regulator of G-protein signalling (RGS) proteins that accelerate the GTPase activity of Galpha subunits and act in a G-protein-coupled receptor (GPCR)-specific manner. The conserved RGS domain accelerates the G subunit GTPase activity, whereas the variable amino-terminal domain participates in GPCR recognition. How receptor recognition is achieved is not known. Here, we show that the scaffold protein spinophilin (SPL), which binds the third intracellular loop (3iL) of several GPCRs, binds the N-terminal domain of RGS2. SPL also binds RGS1, RGS4, RGS16 and GAIP. When expressed in Xenopus laevis oocytes, SPL markedly increased inhibition of alpha-adrenergic receptor (alphaAR) Ca2+ signalling by RGS2. Notably, the constitutively active mutant alphaAR(A293E) (the mutation being in the 3iL) did not bind SPL and was relatively resistant to inhibition by RGS2. Use of betaAR-alphaAR chimaeras identified the 288REKKAA293 sequence as essential for the binding of SPL and inhibition of Ca2+ signalling by RGS2. Furthermore, alphaAR-evoked Ca2+ signalling is less sensitive to inhibition by SPL in rgs2-/- cells and less sensitive to inhibition by RGS2 in spl-/- cells. These findings provide a general mechanism by which RGS proteins recognize GPCRs to confer signalling specificity.


Asunto(s)
Calcio/metabolismo , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas RGS/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos/química , Unión Proteica/fisiología , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Xenopus laevis
5.
Traffic ; 10(8): 1157-67, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19522758

RESUMEN

TRPML3 is an inward rectifying Ca(2+) channel that is regulated by extracytosolic H(+). Although gain-of-function mutation in TRPML3 causes the varitint-waddler phenotype, the role of TRPML3 in cellular physiology is not known. In this study, we report that TRPML3 is a prominent regulator of endocytosis, membrane trafficking and autophagy. Gradient fractionation and confocal localization reveal that TRPML3 is expressed in the plasma membrane and multiple intracellular compartments. However, expression of TRPML3 is dynamic, with accumulation of TRPML3 in the plasma membrane upon inhibition of endocytosis, and recruitment of TRPML3 to autophagosomes upon induction of autophagy. Accordingly, overexpression of TRPML3 leads to reduced constitutive and regulated endocytosis, increased autophagy and marked exacerbation of autophagy evoked by various cell stressors with nearly complete recruitment of TRPML3 into the autophagosomes. Importantly, both knockdown of TRPML3 by siRNA and expression of the channel-dead dominant negative TRPML3(D458K) have a reciprocal effect, reducing endocytosis and autophagy. These findings reveal a prominent role for TRPML3 in regulating endocytosis, membrane trafficking and autophagy, perhaps by controlling the Ca(2+) in the vicinity of cellular organelles that is necessary to regulate these cellular events.


Asunto(s)
Autofagia/fisiología , Transporte Biológico/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Endocitosis/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Transferrina/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Thromb Haemost ; 94(3): 606-14, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16268479

RESUMEN

Domain 5 (D5) of cleaved high molecular weight kininogen (HKa) inhibits angiogenesis in vivo and endothelial cell migration in vitro, but the cell signaling pathways involved in HKa and D5 inhibition of endothelial cell migration are incompletely delineated. This study examines the mechanism of HKa and D5 inhibition of two potent stimulators of endothelial cell migration, sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF), that act through the P13-kinase-Akt signaling pathway. HKa and D5 inhibit bovine pulmonary artery endothelial cell (BPAE) or human umbilical vein endothelial cell chemotaxis in the modified-Boyden chamber in response toVEGF or S1P. The inhibition of migration by HKa is reversed by antibodies to urokinase-type plasminogen activator receptor. Both HKa and D5 decrease the speed of BPAE cell migration and alter the morphology in live, time-lapse microscopy after stimulation with S1P or VEGF. HKa and D5 reduce the localization of paxillin to the focal adhesions after S1P and VEGF stimulation. To better understand the intracellular signaling pathways, we examined the effect of HKa on the phosphorylation of Akt and its downstream effector, GSK-3alpha HKa and D5 inhibit phosphorylation of Akt and GSK-3alpha after stimulation withVEGF and S1P. Inhibitors of Akt and P13-kinase, the upstream activator of Akt, block endothelial cell migration and disrupt paxillin localization to the focal adhesions after stimulation with VEGF and S1P. Therefore we suggest that HKa through its D5 domain alters P13-kinase-Akt signaling to inhibit endothelial cell migration through alterations in the focal adhesions.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Quininógeno de Alto Peso Molecular/farmacología , Fragmentos de Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Androstadienos/farmacología , Animales , Bovinos , Células Cultivadas , Cromonas/farmacología , Células Endoteliales/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Quininógeno de Alto Peso Molecular/química , Lisofosfolípidos/farmacología , Morfolinas/farmacología , Fragmentos de Péptidos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Estructura Terciaria de Proteína , Esfingosina/análogos & derivados , Esfingosina/farmacología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/farmacología , Wortmanina
7.
Transplant Direct ; 1(10)2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26949736

RESUMEN

BACKGROUND: Hemolytic uremic syndrome (HUS) accounts for <1% of renal transplants in the US. There are limited data on the characteristics and outcomes of HUS in pediatric and adult kidney transplant recipients in the US. METHODS: This study included all renal transplant recipients identified with HUS (N=1,233) as a cause of end-stage renal disease between 1987 and 2013 using the UNOS/OPTN database. The cohort was divided into two age groups: pediatric (N=447) and adult (N=786). Main outcomes were acute rejection rate at one-year, allograft and patient survival, and recurrence of HUS post-transplant. Both age groups were then compared with a propensity score (1:2 ratio) matched control group with an alternative primary kidney disease (non-HUS cohort: pediatric [N= 829] and adult [N=1,547]). RESULTS: In pediatric cohort, when compared to the PS matched controls, acute rejection, death censored allograft and patient survival was similar in the HUS group. However, in the adult cohort, the graft and patient survivals were significantly worse in the HUS group. HUS was associated with allograft loss (HR=1.40, 95%CI 1.14-1.71) in adult recipients. Patients with HUS recurrence had significantly lower allograft and patient survival rates compared to the non-recurrent group in both age groups. Acute rejection was one of the major predictor of HUS recurrence in adults (OR=2.64, 95%CI 1.25-5.60). Calcineurin inhibitors (CNI) were not associated HUS recurrence in both age groups. CONCLUSION: Pediatric HUS-patients, unlike adult recipients, have similar outcomes compared to the PS matched controls. Recurrence of HUS is associated with poor allograft and patient survival in pediatric and adult patients. Use of CNIs seem to be safe as a part of maintenance immunosuppression post-transplantation. A comprehensive national registry is urgently needed.

8.
Cell Rep ; 5(1): 51-60, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24095735

RESUMEN

Chronic myeloid leukemia (CML) and some acute lymphoblastic leukemias are characterized by the t(9;22) chromosome, which encodes the BCR/ABL oncogene. Multiple mouse models of CML express BCR/ABL at high levels from non-Bcr promoters, resulting in the development of leukemias. In contrast, a significant fraction of healthy humans have been found to have BCR/ABL-positive hematopoietic cells. To bridge the gap between the information derived from current mouse models and nonleukemic humans with the BCR/ABL oncogene, we generated a knockin model with BCR/ABL p210 expressed from the Bcr locus. Unlike previous models, expression of BCR/ABL from the knockin allele did not induce leukemia. BCR/ABL mutant cells did exhibit favorable bone marrow engraftment compared to control cells. These data suggest that BCR/ABL expression alone is insufficient to induce disease. This model allows for inducible spatial and temporal control of BCR/ABL expression for analysis of early steps in the pathogenesis of BCR/ABL-expressing leukemias.


Asunto(s)
Trasplante de Médula Ósea/métodos , Proteínas de Fusión bcr-abl/biosíntesis , Proteínas de Fusión bcr-abl/genética , Alelos , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Fusión bcr-abl/análisis , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Ratones , Ratones Transgénicos
9.
Mol Cell Biol ; 33(18): 3580-93, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836884

RESUMEN

Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor ß receptor (PDGFßR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFßR (H/P), and TEL/PDGFßR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFßR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas de Microfilamentos , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Proteínas de Fusión Oncogénica/metabolismo , Fosforilación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
Stem Cell Reports ; 1(4): 336-49, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24319668

RESUMEN

Understanding BRCA1 mutant cancers is hampered by difficulties in obtaining primary cells from patients. We therefore generated and characterized 24 induced pluripotent stem cell (iPSC) lines from fibroblasts of eight individuals from a BRCA1 5382insC mutant family. All BRCA1 5382insC heterozygous fibroblasts, iPSCs, and teratomas maintained equivalent expression of both wild-type and mutant BRCA1 transcripts. Although no difference in differentiation capacity was observed between BRCA1 wild-type and mutant iPSCs, there was elevated protein kinase C-theta (PKC-theta) in BRCA1 mutant iPSCs. Cancer cell lines with BRCA1 mutations and hormone-receptor-negative breast cancers also displayed elevated PKC-theta. Genome sequencing of the 24 iPSC lines showed a similar frequency of reprogramming-associated de novo mutations in BRCA1 mutant and wild-type iPSCs. These data indicate that iPSC lines can be derived from BRCA1 mutant fibroblasts to study the effects of the mutation on gene expression and genome stability.


Asunto(s)
Proteína BRCA1/genética , Línea Celular , Mutación , Proteína BRCA1/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma Humano , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas , Isoenzimas/genética , Isoenzimas/metabolismo , Linaje , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C-theta , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Teratoma/genética , Teratoma/metabolismo
11.
J Biol Chem ; 281(11): 7294-301, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16361256

RESUMEN

Mucolipidosis type IV (MLIV) is caused by mutations in the ion channel mucolipin 1 (TRP-ML1). MLIV is typified by accumulation of lipids and membranous materials in intracellular organelles, which was hypothesized to be caused by the altered membrane fusion and fission events. How mutations in TRP-ML1 lead to aberrant lipolysis is not known. Here we present evidence that MLIV is a metabolic disorder that is not associated with aberrant membrane fusion/fission events. Thus, measurement of lysosomal pH revealed that the lysosomes in TRP-ML1(-/-) cells obtained from the patients with MLIV are over-acidified. TRP-ML1 can function as a H(+) channel, and the increased lysosomal acidification in TRP-ML1(-/-) cells is likely caused by the loss of TRP-ML1-mediated H(+) leak. Measurement of lipase activity using several substrates revealed a marked reduction in lipid hydrolysis in TRP-ML1(-/-) cells, which was rescued by the expression of TRP-ML1. Cell fractionation indicated specific loss of acidic lipase activity in TRP-ML1(-/-) cells. Furthermore, dissipation of the acidic lysosomal pH of TRP-ML1(-/-) cells by nigericin or chloroquine reversed the lysosomal storage disease phenotype. These findings provide a new mechanism to account for the pathogenesis of MLIV.


Asunto(s)
Lisosomas/metabolismo , Esterol Esterasa/química , Canales Catiónicos TRPM/química , Naranja de Acridina/farmacología , Calcio/química , Calcio/metabolismo , Señalización del Calcio , Ácidos Carboxílicos/farmacología , Línea Celular , Membrana Celular/metabolismo , Cloroquina/química , Cromatografía en Capa Delgada , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrólisis , Ionóforos/química , Lipasa/química , Lípidos/química , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/química , Magnesio/química , Fusión de Membrana , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Mutación , Fenotipo , Protones , Fracciones Subcelulares/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio
12.
EMBO J ; 25(21): 5049-57, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17053783

RESUMEN

Fluid and HCO(3)(-) secretion are vital functions of the pancreatic duct and other secretory epithelia. CFTR and Cl(-)/HCO(3)(-) exchange activity at the luminal membrane are required for these functions. The molecular identity of the Cl(-)/HCO(3)(-) exchangers and their relationship with CFTR in determining fluid and HCO(3)(-) secretion are not known. We show here that the Cl(-)/HCO(3)(-) exchanger slc26a6 controls CFTR activity and ductal fluid and HCO(3)(-) secretion. Unexpectedly, deletion of slc26a6 in mice and measurement of fluid and HCO(3)(-) secretion into sealed intralobular pancreatic ducts revealed that deletion of slc26a6 enhanced spontaneous and decreased stimulated secretion. Remarkably, inhibition of CFTR activity with CFTR(inh)-172, knock-down of CFTR by siRNA and measurement of CFTR current in WT and slc26a6(-/-) duct cells revealed that deletion of slc26a6 resulted in dis-regulation of CFTR activity by removal of tonic inhibition of CFTR by slc26a6. These findings reveal the intricate regulation of CFTR activity by slc26a6 in both the resting and stimulated states and the essential role of slc26a6 in pancreatic HCO(3)(-) secretion in vivo.


Asunto(s)
Antiportadores/metabolismo , Bicarbonatos/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Conductos Pancreáticos/metabolismo , Animales , Antiportadores/deficiencia , Cloruros/metabolismo , Fibrosis Quística/genética , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Noqueados , Jugo Pancreático/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Transportadores de Sulfato
13.
Proc Natl Acad Sci U S A ; 100(21): 12325-30, 2003 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-14528005

RESUMEN

The palmitoyl protein thioesterase-2 (PPT2) gene encodes a lysosomal thioesterase homologous to PPT1, which is the enzyme defective in the human disorder called infantile neuronal ceroid lipofuscinosis. In this article, we report that PPT2 deficiency in mice causes an unusual form of neuronal ceroid lipofuscinosis with striking visceral manifestations. All PPT2-deficient mice displayed a neurodegenerative phenotype with spasticity and ataxia by 15 mo. The bone marrow was infiltrated by brightly autofluorescent macrophages and multinucleated giant cells, but interestingly, the macrophages did not have the typical appearance of foam cells commonly associated with other lysosomal storage diseases. Marked splenomegaly caused by extramedullary hematopoiesis was observed. The pancreas was grossly orange to brown as a result of massive storage of lipofuscin pigments in the exocrine (but not islet) cells. Electron microscopy showed that the storage material consisted of multilamellar membrane profiles ("zebra bodies"). In summary, PPT2 deficiency in mice manifests as a neurodegenerative disorder with visceral features. Although PPT2 deficiency has not been described in humans, manifestations would be predicted to include neurodegeneration with bone marrow histiocytosis, visceromegaly, brown pancreas, and linkage to chromosome 6p21.3 in affected families.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/enzimología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Tioléster Hidrolasas/deficiencia , Animales , Médula Ósea/patología , Encéfalo/enzimología , Encéfalo/patología , Células Gigantes/patología , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/genética , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/genética , Páncreas/patología , Fenotipo , Bazo/patología , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA