Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Fertil Steril ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677710

RESUMEN

OBJECTIVE: To evaluate combinations of candidate biomarkers to develop a multiplexed prediction model for identifying the viability and location of an early pregnancy. In this study, we assessed 24 biomarkers with multiple machine learning-based methodologies to assess if multiplexed biomarkers may improve the diagnosis of normal and abnormal early pregnancies. DESIGN: A nested case-control design evaluated the predictive ability and discrimination of biomarkers in patients at risk of early pregnancy failure in the first trimester to classify viability and location. SETTING: Three university hospitals. PATIENTS: A total of 218 individuals with pain and/or bleeding in early pregnancy: 75 had an ongoing intrauterine gestation; 68 had ectopic pregnancies (EPs); and 75 had miscarriages. INTERVENTIONS: Serum levels of 24 biomarkers were assessed in the same patients. Multiple machine learning-based methodologies to evaluate combinations of these top candidates to develop a multiplexed prediction model for the identification of a nonviable pregnancy (ongoing intrauterine pregnancy vs. miscarriage or EP) and an EP (EP vs. ongoing intrauterine pregnancy or miscarriage). MAIN OUTCOME MEASURES: The predicted classification using each model was compared with the actual diagnosis, and sensitivity, specificity, positive predictive value, negative predictive value, conclusive classification, and accuracy were calculated. RESULTS: Models using classification regression tree analysis using 3 (pregnancy-specific beta-1-glycoprotein 3 [PSG3], chorionic gonadotropin-alpha subunit, and pregnancy-associated plasma protein-A) biomarkers were able to predict a maximum sensitivity of 93.3% and a maximum specificity of 98.6%. The model with the highest accuracy was 97.4% (with 70.2% receiving classification). Models using an overlapping group of 3 (soluble fms-like tyrosine kinase-1, PSG3, and tissue factor pathway inhibitor 2) biomarkers achieved a maximum sensitivity of 98.5% and a maximum specificity of 95.3%. The model with the highest accuracy was 94.4% (with 65.6% receiving classification). When the models were used simultaneously, the conclusive classification increased to 72.7% with an accuracy of 95.9%. The predictive ability of the biomarkers in the random forest produced similar test characteristics when using 11 predictive biomarkers. CONCLUSION: We have demonstrated a pool of biomarkers from divergent biological pathways that can be used to classify individuals with potential early pregnancy loss. The biomarkers choriogonadotropin alpha, pregnancy-associated plasma protein-A, and PSG3 can be used to predict viability, and soluble fms-like tyrosine kinase-1, tissue factor pathway inhibitor 2, and PSG3 can be used to predict pregnancy location.

2.
Nat Commun ; 15(1): 633, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245503

RESUMEN

The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10high to a Sox9high immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.


Asunto(s)
Relojes Circadianos , Melanoma , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Carcinogénesis/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Melanoma/genética
3.
Cancer Res Commun ; 4(8): 1908-1918, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007351

RESUMEN

Aged patients with melanoma (>65 years old) have more aggressive disease relative to young patients (<55 years old) for reasons that are not completely understood. Analysis of the young and aged secretome from human dermal fibroblasts identified >5-fold levels of IGF-binding protein 2 (IGFBP2) in the aged fibroblast secretome. IGFBP2 functionally triggers upregulation of the PI3K-dependent fatty acid biosynthesis program in melanoma cells. Melanoma cells co-cultured with aged dermal fibroblasts have higher levels of lipids relative to those co-cultured with young dermal fibroblasts, which can be lowered by silencing IGFBP2 expression in fibroblasts prior to treating with conditioned media. Conversely, ectopically treating melanoma cells with recombinant IGFBP2 in the presence of conditioned media from young fibroblasts or overexpressing IGFBP2 in melanoma cells promoted lipid synthesis and accumulation in melanoma cells. Treatment of young mice with rIGFBP2 increases tumor growth. Neutralizing IGFBP2 in vitro reduces migration and invasion in melanoma cells, and in vivo studies demonstrate that neutralizing IGFBP2 in syngeneic aged mice reduces tumor growth and metastasis. Our results suggest that aged dermal fibroblasts increase melanoma cell aggressiveness through increased secretion of IGFBP2, stressing the importance of considering age when designing studies and treatment. SIGNIFICANCE: The aged microenvironment drives metastasis in melanoma cells. This study reports that IGFBP2 secretion by aged fibroblasts induces lipid accumulation in melanoma cells, driving an increase in tumor invasiveness. Neutralizing IGFBP2 decreases melanoma tumor growth and metastasis.


Asunto(s)
Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Melanoma , Invasividad Neoplásica , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Humanos , Animales , Melanoma/patología , Melanoma/metabolismo , Ratones , Línea Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/patología , Movimiento Celular , Anciano , Persona de Mediana Edad , Lípidos , Metabolismo de los Lípidos , Factores de Edad , Ratones Endogámicos C57BL
4.
J Extracell Vesicles ; 13(8): e12482, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105261

RESUMEN

It is known that small extracellular vesicles (sEVs) are released from cancer cells and contribute to cancer progression via crosstalk with recipient cells. We have previously reported that sEVs expressing the αVß3 integrin, a protein upregulated in aggressive neuroendocrine prostate cancer (NEPrCa), contribute to neuroendocrine differentiation (NED) in recipient cells. Here, we examine the impact of αVß3 expression on sEV protein content, density and function. sEVs used in this study were isolated by iodixanol density gradients and characterized by nanoparticle tracking analysis, immunoblotting and single vesicle analysis. Our proteomic profile of sEVs containing αVß3 shows downregulation of typical effectors involved in apoptosis and necrosis and an upregulation of tumour cell survival factors compared to control sEVs. We also show that the expression of αVß3 in sEVs causes a distinct reposition of EV markers (Alix, CD81, CD9) to a low-density sEV subpopulation. This low-density reposition is independent of extracellular matrix (ECM) protein interactions with sEVs. This sEV subset contains αVß3 and an αVß3 downstream effector, NgR2, a novel marker for NEPrCa. We show that sEVs containing αVß3 are loaded with higher amounts of NgR2 as compared to sEVs that do not express αVß3. Mechanistically, we demonstrate that sEVs containing NgR2 do not affect the sEV marker profile, but when injected in vivo intratumorally, they promote tumour growth and induce NED. We show that sEVs expressing NgR2 increase the activation of focal adhesion kinase (FAK), a known promoter of cancer cell proliferation, in recipient cells. We also show that NgR2 mimics the effect of sEVs containing αVß3 since it displays increased growth of NgR2 transfectants in vivo, as compared to control cells. Overall, our results describe the changes that occur in cargo, density and functions of cancer cell-derived sEVs containing the αVß3 integrin and its effector, NgR2, without affecting the sEV tetraspanin profiles.


Asunto(s)
Vesículas Extracelulares , Integrina alfaVbeta3 , Neoplasias de la Próstata , Masculino , Integrina alfaVbeta3/metabolismo , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Vesículas Extracelulares/metabolismo , Animales , Línea Celular Tumoral , Ratones , Carcinogénesis/metabolismo
5.
Nat Aging ; 4(2): 185-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267705

RESUMEN

Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.


Asunto(s)
Transducción de Señal , Tiorredoxina Reductasa 1 , Animales , Ratones , Senescencia Celular/genética , Inmunidad Innata/genética , Inflamación/genética , Nucleotidiltransferasas/genética , Tiorredoxina Reductasa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA