Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell ; 163(6): 1388-99, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26627736

RESUMEN

Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance.


Asunto(s)
Evolución Biológica , Genes Esenciales , Saccharomyces cerevisiae/genética , Eliminación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/metabolismo
2.
BMC Complement Altern Med ; 12: 93, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22784363

RESUMEN

BACKGROUND: Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin's multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. METHODS: To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. RESULTS: We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. CONCLUSIONS: Taken together, these results show that helenalin mediated autophagic cell death entails inhibition of NF-κB p65, thus providing a promising approach for the treatment of cancers with aberrant activation of the NF-κB pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Arnica/química , Autofagia/efectos de los fármacos , Neoplasias/metabolismo , Fitoterapia , Receptores Similares a Lectina de Células NK/antagonistas & inhibidores , Sesquiterpenos/farmacología , Clorometilcetonas de Aminoácidos/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteína 12 Relacionada con la Autofagia , Caspasas/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Fase G1/efectos de los fármacos , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , ARN Interferente Pequeño/metabolismo , Sesquiterpenos/uso terapéutico , Sesquiterpenos de Guayano , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-29367879

RESUMEN

Sequencing-based microbiome profiling aims at detecting and quantifying individual members of a microbial community in a culture-independent manner. While amplicon-based sequencing (ABS) of bacterial or fungal ribosomal DNA is the most widely used technology due to its low cost, it suffers from PCR amplification biases that hinder accurate representation of microbial population structures. Shotgun metagenomics (SMG) conversely allows unbiased microbiome profiling but requires high sequencing depth. Here we report the development of a meta-total RNA sequencing (MeTRS) method based on shotgun sequencing of total RNA and benchmark it on a human stool sample spiked in with known abundances of bacterial and fungal cells. MeTRS displayed the highest overall sensitivity and linearity for both bacteria and fungi, the greatest reproducibility compared to SMG and ABS, while requiring a ~20-fold lower sequencing depth than SMG. We therefore present MeTRS as a valuable alternative to existing technologies for large-scale profiling of complex microbiomes.

4.
Immunobiology ; 221(11): 1227-36, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27387891

RESUMEN

Myasthenia gravis (MG) is a T-cell dependent autoimmune disorder of the neuromuscular junction, characterised by muscle weakness and fatigability. Autoimmunity is thought to initiate in the thymus of acetylcholine receptor (AChR)-positive MG patients; however, the molecular mechanisms linking intra-thymic MG pathogenesis with autoreactivity via the circulation to the muscle target organ are poorly understood. Using whole-transcriptome sequencing, we compared the transcriptional profile of peripheral blood mononuclear cells from AChR-early onset MG (AChR-EOMG) patients with healthy controls: 178 coding transcripts and 229 long non-coding RNAs, including 11 pre-miRNAs, were differentially expressed. Among the 178 coding transcripts, 128 were annotated of which 17% were associated with the 'infectious disease' functional category and 46% with 'inflammatory disease' and 'inflammatory response-associated' categories. Validation of selected transcripts by qPCR indicated that of the infectious disease-related transcripts, ETF1, NFKB2, PLK3, and PPP1R15A were upregulated, whereas CLC and IL4 were downregulated in AChR-EOMG patients; in the 'inflammatory' categories, ABCA1, FUS, and RELB were upregulated, suggesting a contribution of these molecules to immunological dysfunctions in MG. Data selection and validation were also based on predicted microRNA-mRNA interactions. We found that miR-612, miR-3654, and miR-3651 were increased, whereas miR-612-putative AKAp12 and HRH4 targets and the miR-3651-putative CRISP3 target were downregulated in AChR-EOMG, also suggesting altered immunoregulation. Our findings reveal a novel peripheral molecular signature in AChR-EOMG, reflecting a critical involvement of inflammatory- and infectious disease-related immune responses in disease pathogenesis.


Asunto(s)
Infecciones/complicaciones , Inflamación/complicaciones , Leucocitos Mononucleares/metabolismo , Miastenia Gravis/etiología , Adulto , Factores de Edad , Edad de Inicio , Biomarcadores , Estudios de Casos y Controles , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Infecciones/etiología , Inflamación/etiología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Miastenia Gravis/sangre , Miastenia Gravis/diagnóstico , ARN no Traducido/genética , Receptores Colinérgicos/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA