Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 63(9): 1194-1205, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38598309

RESUMEN

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.


Asunto(s)
Hordeum , Hordeum/enzimología , Hordeum/genética , Especificidad por Sustrato , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/química , Mutagénesis , beta-Glucanos/metabolismo
2.
Chembiochem ; 25(1): e202300577, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37874183

RESUMEN

Cellular genome is considered a dynamic blueprint of a cell since it encodes genetic information that gets temporally altered due to various endogenous and exogenous insults. Largely, the extent of genomic dynamicity is controlled by the trade-off between DNA repair processes and the genotoxic potential of the causative agent (genotoxins or potential carcinogens). A subset of genotoxins form DNA adducts by covalently binding to the cellular DNA, triggering structural or functional changes that lead to significant alterations in cellular processes via genetic (e. g., mutations) or non-genetic (e. g., epigenome) routes. Identification, quantification, and characterization of DNA adducts are indispensable for their comprehensive understanding and could expedite the ongoing efforts in predicting carcinogenicity and their mode of action. In this review, we elaborate on using Artificial Intelligence (AI)-based modeling in adducts biology and present multiple computational strategies to gain advancements in decoding DNA adducts. The proposed AI-based strategies encompass predictive modeling for adduct formation via metabolic activation, novel adducts' identification, prediction of biochemical routes for adduct formation, adducts' half-life predictions within biological ecosystems, and, establishing methods to predict the link between adducts chemistry and its location within the genomic DNA. In summary, we discuss some futuristic AI-based approaches in DNA adduct biology.


Asunto(s)
Aductos de ADN , Ecosistema , Inteligencia Artificial , Mutágenos , ADN/genética
3.
Crit Rev Biotechnol ; : 1-28, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705837

RESUMEN

Vibrio species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains of Vibrio diseases are increasing day by day. Control of Vibrio species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, Vibrio control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of Vibrio-related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging Vibrio species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of Vibrio-related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.

4.
Microb Cell Fact ; 22(1): 226, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925404

RESUMEN

Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.


Asunto(s)
Endófitos , Plantas Medicinales , Humanos , Endófitos/metabolismo , Ecosistema , Hongos/metabolismo , Biodiversidad
5.
Med Mycol ; 61(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553154

RESUMEN

The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.


Fungal infections are neglected diseases that affect more than a billion people worldwide. Some histone deacetylase inhibitors can act against fungal cells. Our data reveal that HDACi LDT536 and LDT537 have potential antibiofilm and antifungal activities.

6.
Phys Chem Chem Phys ; 24(34): 20371-20380, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35983778

RESUMEN

New variants of SARS-CoV-2 are being reported worldwide. The World Health Organization has reported Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529) as the variants of concern. There are speculations that the variants might evade the host immune responses induced by currently available vaccines and develop resistance to drugs under consideration. The first step of viral infection in COVID-19 occurs through the interaction of the spike protein's receptor-binding domain (RBD) with the peptidase domain of the human ACE-2 (hACE-2) receptor. This study aims to get a molecular-level understanding of the mechanism behind the increased infection rate in the alpha variant. We have computationally studied the spike protein interaction in both the wild-type and B.1.1.7 variant with the hACE-2 receptor using molecular dynamics and MM-GBSA based binding free energy calculations. The binding free energy difference shows that the mutant variant of the spike protein has increased binding affinity for the hACE-2 receptor (i.e. ΔG(N501Y,A570D) is in the range -7.2 to -7.6 kcal mol-1) and the results were validated using Density functional theory. We demonstrate that with the use of state-of-the-art computational approaches, we can, in advance, predict the virulent nature of variants of SARS-CoV-2 and alert the world healthcare system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Virulencia
7.
Phys Chem Chem Phys ; 24(42): 26316, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36281630

RESUMEN

Correction for 'Computational investigation of the increased virulence and pathogenesis of SARS-CoV-2 lineage B.1.1.7' by N. Arul Murugan et al., Phys. Chem. Chem. Phys., 2022, 24, 20371-20380, https://doi.org/10.1039/D2CP00469K.

8.
Biol Cybern ; 116(2): 147-162, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35441346

RESUMEN

In this paper, we consider a noisy network of nonlinear systems in the sense that each system is driven by two sources of state-dependent noise: (1) an intrinsic noise that can be generated by the environment or any internal fluctuations and (2) a noisy coupling which is generated by interactions with other systems. Our goal is to understand the effect of noise and coupling on synchronization behaviors of such networks. First, we assume that all the systems are driven by a common noise and show how a common noise can be detrimental or beneficial for network synchronization behavior. Then, we assume that the systems are driven by independent noise and study network approximate synchronization behavior. We numerically illustrate our results using the example of coupled Van der Pol oscillators.

9.
Environ Res ; 204(Pt B): 112067, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34543636

RESUMEN

COVID-19 positive patients can egest live SARS-CoV-2 virus and viral genome fragments through faecal matter and urine, raising concerns about viral transmission through the faecal-oral route and/or contaminated aerosolized water. These concerns are amplified in many low- and middle-income countries, where raw sewage is often discharged into surface waterways and open defecation is common. Nonetheless, there has been no evidence of COVID-19 transmission via ambient urban water, and the virus viability in such aquatic matrices is believed to be minimal and not a matter of concern. In this manuscript, we attempt to discern the presence of SARS-CoV-2 genetic material (ORF-1ab, N and S genes) in the urban water (lakes, rivers, and drains) of the two Indian cities viz., Ahmedabad (AMD), in western India with 9 wastewater treatment plants (WWTPs) and Guwahati (GHY), in the north-east of the country with no such treatment facilities. The present study was carried out to establish the applicability of environmental water surveillance (E-wat-Surveillance) of COVID-19 as a potential tool for public health monitoring at the community level. 25.8% and 20% of the urban water samples had detectable SARS-CoV-2 RNA load in AMD and GHY, respectively. N-gene > S-gene > ORF-1ab-gene were readily detected in the urban surface water of AMD, whereas no such observable trend was noticed in the case of GHY. The high concentrations of SARS-CoV-2 genes (e.g., ORF-1ab; 800 copies/L for Sabarmati River, AMD and S-gene; 565 copies/L for Bharalu urban river, GHY) found in urban waters suggest that WWTPs do not always completely remove the virus genetic material and that E-wat-Surveillance of COVID-19 in cities/rural areas with poor sanitation is possible.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ciudades , Humanos , ARN Viral , Saneamiento , Aguas Residuales
10.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328828

RESUMEN

The new variant of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), Omicron, has been quickly spreading in many countries worldwide. Compared to the original virus, Omicron is characterized by several mutations in its genomic region, including the spike protein's receptor-binding domain (RBD). We have computationally investigated the interaction between the RBD of both the wild type and Omicron variant of SARS-CoV-2 with the human angiotensin-converting enzyme 2 (hACE2) receptor using molecular dynamics and molecular mechanics-generalized Born surface area (MM-GBSA)-based binding free energy calculations. The mode of the interaction between Omicron's RBD with the hACE2 receptor is similar to the original SARS-CoV-2 RBD except for a few key differences. The binding free energy difference shows that the spike protein of Omicron has an increased affinity for the hACE2 receptor. The mutated residues in the RBD showed strong interactions with a few amino acid residues of hACE2. More specifically, strong electrostatic interactions (salt bridges) and hydrogen bonding were observed between R493 and R498 residues of the Omicron RBD with D30/E35 and D38 residues of the hACE2, respectively. Other mutated amino acids in the Omicron RBD, e.g., S496 and H505, also exhibited hydrogen bonding with the hACE2 receptor. A pi-stacking interaction was also observed between tyrosine residues (RBD-Tyr501: hACE2-Tyr41) in the complex, which contributes majorly to the binding free energies and suggests that this is one of the key interactions stabilizing the formation of the complex. The resulting structural insights into the RBD:hACE2 complex, the binding mode information within it, and residue-wise contributions to the free energy provide insight into the increased transmissibility of Omicron and pave the way to design and optimize novel antiviral agents.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virulencia
11.
Biomacromolecules ; 22(4): 1600-1613, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749252

RESUMEN

Commercial mucin glycoproteins are routinely used as a model to investigate the broad range of important functions mucins fulfill in our bodies, including lubrication, protection against hostile germs, and the accommodation of a healthy microbiome. Moreover, purified mucins are increasingly selected as building blocks for multifunctional materials, i.e., as components of hydrogels or coatings. By performing a detailed side-by-side comparison of commercially available and lab-purified variants of porcine gastric mucins, we decipher key molecular motifs that are crucial for mucin functionality. As two main structural features, we identify the hydrophobic termini and the hydrophilic glycosylation pattern of the mucin glycoprotein; moreover, we describe how alterations in those structural motifs affect the different properties of mucins-on both microscopic and macroscopic levels. This study provides a detailed understanding of how distinct functionalities of gastric mucins are established, and it highlights the need for high-quality mucins-for both basic research and the development of mucin-based medical products.


Asunto(s)
Glicoproteínas , Mucinas , Animales , Glicoproteínas/metabolismo , Glicosilación , Hidrogeles , Lubrificación , Mucinas/metabolismo , Porcinos
12.
J Environ Manage ; 255: 109914, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32063304

RESUMEN

Rapid demographic expansion along with increasing urbanization has aggravated the problem of solid waste management. Therefore, scientists are seeking waste management methods that are eco-friendly, cost effective and produce immediate results. In the developing world, municipal solid waste (MSW) contains mostly organic substances, therefore vermicomposting could be a better and cost-effective option for waste management. In this study, vermicomposting of organic portion of MSW with cow dung (additive) was performed using Eisenia fetida. The results showed significant (p < 0.001) decline in pH (13.17%), TOC (21.70%), C: N (62.53%) and C: P (57.66%) ratios, whilst total N (108.9%), P (84.89%) and K (21.85%) content increased (p < 0.001) in matured vermicompost. Different enzymatic activities declined during termination phase of vermicomposting experiment with maximum decrease of 41.72 (p = 0.002) and 39.56% (p = 0.001) in protease and ß-glucosidase, respectively. FT-IR, TGA, DSC and SEM studies suggested that final vermicompost was more stabilized as compared to initial waste mixture, characterized by reduced levels of aliphatic materials, carbohydrates and increase in aromatic groups possibly due to biosynthesis of humic substances. Both, the conventional (physicochemical and enzyme activity) and advanced techniques depict maturity and stability of the ready vermicompost. However, FT-IR, TGA, DSC and SEM were proved to be more promising, fast and reliable techniques over conventional analyses.


Asunto(s)
Oligoquetos , Residuos Sólidos , Animales , Bovinos , Femenino , Sustancias Húmicas , Estiércol , Suelo , Espectroscopía Infrarroja por Transformada de Fourier
13.
Environ Monit Assess ; 192(3): 191, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32080774

RESUMEN

Varanasi, India's historic cultural capital, struggles with efficient waste management practices. This impacts environment and human well-being in terms of waste generation that is estimated around 550-650 TPD with a generation rate of 0.42 kg capita-1 day-1 (n = 117). The present study aims to explore and characterize wastes, current practices, ecological profiling, and phytotoxicity of an abandoned open dumping site, and vermicomposting of organic fraction of municipal solid waste (OFMSW) as sustainable waste management approach. Compositional analysis of waste indicates organic fraction (46.13%) as a major component along with a considerable amount of heavy metals. The calorific value and moisture content of municipal solid waste (MSW) was 2351.4 cal g-1 and 34.72%, respectively. Ecological profiling of the dumping site revealed that floral diversity and ecological species/indicators were negatively affected. Likewise, phytotoxicity results displayed a negative impact on germination and physiology of maize (Zea mays L.) plants grown on dumping site soil. Vermistabilization of OFMSW showed a significant increase in N (56.10-89.48%), P (33.93-82.87%), and K (25.55-50.42%) and a decrease in total organic carbon (15.15-24.81%). Similarly, C/N and C/P ratios decreased by 1.89-2.51 and 1.72-2.18 folds, respectively. A survey of stakeholders suggested that open dumping was the main practice adopted by Varanasi Municipal Corporation (VMC) during 2013-2015. Recently (2017-2018), VMC adopted different methods, such as door-to-door collection and source segregation for effective waste management. Waste characteristics and nutrient profile of the vermicompost explains that vermicomposting could be used for efficient waste management in Varanasi, further reducing the collection, transportation, and disposal costs of waste, which enables to close the loop and move towards a circular economy. Moreover, implications of existing waste management practices and possible management options need to be addressed scientifically. Therefore, this research outcome will help in designing a successful waste management plan for Varanasi and other cities with similar waste characteristics.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Ciudades , Monitoreo del Ambiente , Alimentos , Humanos , India , Residuos Sólidos
15.
Biomacromolecules ; 19(3): 872-882, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29451983

RESUMEN

The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases. Unfortunately, there are no effective strategies that reinforce the mucus barrier properties to recover or enhance its ability to protect the epithelium. Herein, we describe a mucus engineering approach that addresses this issue where we physically cross-link the mucus gel with low molar mass chitosan variants to reinforce its barrier functions. We tested the effect of these chitosans on mucus using in-lab purified porcine gastric mucins, which mimic the native properties of mucus, and on mucus-secreting HT29-MTX epithelial cell cultures. We found that the lowest molar mass chitosan variant (degree of polymerization of 8) diffuses deep into the mucus gels while physically cross-linking the mucin polymers, whereas the higher molar mass chitosan variants (degree of polymerization of 52 and 100) interact only superficially. The complexation resulted in a tighter mucin polymer mesh that slowed the diffusion of dextran polymers and of the cholera toxin B subunit protein through the mucus gels. These results uncover a new use for low molar mass mucoadhesive polymers such as chitosans as noncytotoxic mucosal barrier enhancers that could be valuable in the prevention and treatment of mucosal diseases.


Asunto(s)
Quitosano , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/metabolismo , Animales , Línea Celular , Quitosano/farmacocinética , Quitosano/farmacología , Toxina del Cólera/farmacocinética , Toxina del Cólera/farmacología , Dextranos/farmacocinética , Dextranos/farmacología , Células Epiteliales/patología , Humanos , Mucosa Intestinal/patología , Porcinos
16.
J Exp Bot ; 68(13): 3405-3417, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28633298

RESUMEN

Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Populus/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/crecimiento & desarrollo , Xilema/metabolismo
17.
Biomacromolecules ; 18(8): 2454-2462, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28635258

RESUMEN

In the human body, high-molecular-weight glycoproteins called mucins play a key role in protecting epithelial surfaces against pathogenic attack, controlling the passage of molecules toward the tissue and enabling boundary lubrication with very low friction coefficients. However, neither the molecular mechanisms nor the chemical motifs of those biomacromolecules involved in these fundamental processes are fully understood. Thus, identifying the key features that render biomacromolecules such as mucins outstanding boundary lubricants could set the stage for creating versatile artificial superlubricants. We here demonstrate the importance of the hydrophobic terminal peptide domains of porcine gastric mucin (MUC5AC) and human salivary mucin (MUC5B) in the processes of adsorbing to and lubricating a hydrophobic PDMS surface. Tryptic digestion of those mucins results in removal of those terminal domains, which is accompanied by a loss of lubricity as well as surface adsorption. We show that this loss can in part be compensated by attaching hydrophobic phenyl groups to the glycosylated central part of the mucin macromolecule. Furthermore, we demonstrate that the simple biopolysaccharide dextran can be functionalized with hydrophobic groups which confers efficient surface adsorption and good lubricity on PDMS to the polysaccharide.


Asunto(s)
Dimetilpolisiloxanos/química , Lubricantes/química , Mucina 5AC/química , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Porcinos
18.
Biochemistry ; 55(13): 2054-61, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26967377

RESUMEN

Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-ß-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4)-linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-ß-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-ß-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.


Asunto(s)
Fibras de la Dieta/análisis , Glucosiltransferasas/metabolismo , Hordeum/enzimología , Modelos Moleculares , Proteínas de Plantas/metabolismo , Sorghum/enzimología , beta-Glucanos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Biología Computacional , Sistemas Especialistas , Glucosiltransferasas/química , Glucosiltransferasas/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Conformación Molecular , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutación Puntual , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , beta-Glucanos/química
19.
Plant Cell ; 24(7): 3009-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22786870

RESUMEN

Exposure of plants to light intensities that exceed the electron utilization capacity of the chloroplast has a dramatic impact on nuclear gene expression. The photoreceptor Cryptochrome 1 (cry1) is essential to the induction of genes encoding photoprotective components in Arabidopsis thaliana. Bioinformatic analysis of the cry1 regulon revealed the putative cis-element CryR1 (GnTCKAG), and here we demonstrate an interaction between CryR1 and the zinc finger GATA-type transcription factors ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 (ZML1) and ZML2. The ZML proteins specifically bind to the CryR1 cis-element as demonstrated in vitro and in vivo, and TCTAG was shown to constitute the core sequence required for ZML2 binding. In addition, ZML2 activated transcription of the yellow fluorescent protein reporter gene driven by the CryR1 cis-element in Arabidopsis leaf protoplasts. T-DNA insertion lines for ZML2 and its homolog ZML1 demonstrated misregulation of several cry1-dependent genes in response to excess light. Furthermore, the zml1 and zml2 T-DNA insertion lines displayed a high irradiance-sensitive phenotype with significant photoinactivation of photosystem II (PSII), indicated by reduced maximum quantum efficiency of PSII, and severe photobleaching. Thus, we identified the ZML2 and ZML1 GATA transcription factors as two essential components of the cry1-mediated photoprotective response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Inflorescencia/fisiología , Inflorescencia/efectos de la radiación , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Meristema/efectos de la radiación , Modelos Moleculares , Mutagénesis Insercional , Fenotipo , Complejo de Proteína del Fotosistema II/fisiología , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión , Regulón/genética , Elementos de Respuesta/genética , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Plantones/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
20.
Mol Cell Proteomics ; 12(12): 3874-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24051156

RESUMEN

The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1 → 3)-ß-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glucanos/biosíntesis , Glucosiltransferasas/metabolismo , Microdominios de Membrana/química , Células Vegetales/química , Populus/metabolismo , Proteómica/métodos , Transporte Biológico , Técnicas de Cultivo de Célula , Pared Celular/química , Glucosiltransferasas/genética , Glucosiltransferasas/aislamiento & purificación , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Espectrometría de Masas , Anotación de Secuencia Molecular , Células Vegetales/metabolismo , Populus/genética , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA