Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 1): 227-234, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601941

RESUMEN

The JUNGFRAU 4-megapixel (4M) charge-integrating pixel-array detector, when operated at a full 2 kHz frame rate, streams data at a rate of 17 GB s-1. To operate this detector for macromolecular crystallography beamlines, a data-acquisition system called Jungfraujoch was developed. The system, running on a single server with field-programmable gate arrays and general-purpose graphics processing units, is capable of handling data produced by the JUNGFRAU 4M detector, including conversion of raw pixel readout to photon counts, compression and on-the-fly spot finding. It was also demonstrated that 30 GB s-1 can be handled in performance tests, indicating that the operation of even larger and faster detectors will be achievable in the future. The source code is available from a public repository.


Asunto(s)
Programas Informáticos , Sincrotrones , Rayos X , Radiografía , Cristalografía por Rayos X
2.
Opt Express ; 22(12): 14859-70, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977581

RESUMEN

The smaller pixel size and high frame rate of next-generation photon counting pixel detectors opens new opportunities for the application of X-ray coherent diffractive imaging (CDI). In this manuscript we demonstrate fast image acquisition for ptychography using an Eiger detector. We achieve above 25,000 resolution elements per second, or an effective dwell time of 40 µs per resolution element, when imaging a 500 µm × 290 µm region of an integrated electronic circuit with 41 nm resolution. We further present the application of a scheme of sharing information between image parts that allows the field of view to exceed the range of the piezoelectric scanning system and requirements on the stability of the illumination to be relaxed.

3.
J Appl Crystallogr ; 57(Pt 4): 931-944, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108821

RESUMEN

Serial crystallography (SX) involves combining observations from a very large number of diffraction patterns coming from crystals in random orientations. To compile a complete data set, these patterns must be indexed (i.e. their orientation determined), integrated and merged. Introduced here is TORO (Torch-powered robust optimization) Indexer, a robust and adaptable indexing algorithm developed using the PyTorch framework. TORO is capable of operating on graphics processing units (GPUs), central processing units (CPUs) and other hardware accelerators supported by PyTorch, ensuring compatibility with a wide variety of computational setups. In tests, TORO outpaces existing solutions, indexing thousands of frames per second when running on GPUs, which positions it as an attractive candidate to produce real-time indexing and user feedback. The algorithm streamlines some of the ideas introduced by previous indexers like DIALS real-space grid search [Gildea, Waterman, Parkhurst, Axford, Sutton, Stuart, Sauter, Evans & Winter (2014). Acta Cryst. D70, 2652-2666] and XGandalf [Gevorkov, Yefanov, Barty, White, Mariani, Brehm, Tolstikova, Grigat & Chapman (2019). Acta Cryst. A75, 694-704] and refines them using faster and principled robust optimization techniques which result in a concise code base consisting of less than 500 lines. On the basis of evaluations across four proteins, TORO consistently matches, and in certain instances outperforms, established algorithms such as XGandalf and MOSFLM [Powell (1999). Acta Cryst. D55, 1690-1695], occasionally amplifying the quality of the consolidated data while achieving superior indexing speed. The inherent modularity of TORO and the versatility of PyTorch code bases facilitate its deployment into a wide array of architectures, software platforms and bespoke applications, highlighting its prospective significance in SX.

4.
J Appl Crystallogr ; 53(Pt 2): 574-586, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32280327

RESUMEN

Over the past decade, ptychography has been proven to be a robust tool for non-destructive high-resolution quantitative electron, X-ray and optical microscopy. It allows for quantitative reconstruction of the specimen's transmissivity, as well as recovery of the illuminating wavefront. Additionally, various algorithms have been developed to account for systematic errors and improved convergence. With fast ptychographic microscopes and more advanced algorithms, both the complexity of the reconstruction task and the data volume increase significantly. PtychoShelves is a software package which combines high-level modularity for easy and fast changes to the data-processing pipeline, and high-performance computing on CPUs and GPUs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA