Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Nutr ; 150(5): 1086-1092, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31965174

RESUMEN

BACKGROUND: Dietary calcium and phosphorus are required for bone and muscle development. Deficiencies of these macrominerals reduce bone mineral and muscle accretion potentially via alterations of mesenchymal stem cell (MSC) and satellite cell (SC) activities. OBJECTIVES: With increasing interest in the role of early-life events on lifetime health outcomes, we aimed to elucidate the impact of dietary calcium and phosphorus, from deficiency through excess, on MSC and SC characteristics during neonatal development. METHODS: Neonatal pigs [30 females, 1-d-old, 1.46 ± 0.04 kg body weight (BW)] were fed milk replacers for 16 d that were isonitrogenous and isocaloric with a consistent ratio of calcium to phosphorus, but either 25% deficient (calcium: 0.78%; phosphorus: 0.60%; CaPD), adequate (calcium: 1.08%; phosphorus: 0.84%; CaPA), or 25% in excess (calcium: 1.38%; phosphorus: 1.08%; CaPE) of calcium and phosphorus requirements based on sow-milk composition and extrapolation from NRC requirements for older pigs. BW and feed intake were recorded daily. Blood was collected for serum phosphorus, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23) determination. Humeri were collected for MSC isolation and radii/ulnae bone were collected for analysis. Longissimus dorsi muscle was collected for SC isolation and analysis. RESULTS: There was 4.6% increase in bone ash percentage in CaPE- versus CaPD-fed pigs (P < 0.05). In vivo proliferation indicated a 41.3% increase in MSCs in CaPA compared with CaPD and a 19% increase in SCs in CaPA compared with both CaPE and CaPD. MSCs from CaPD had 2- to 5-fold greater expression of peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), and lipoprotein lipase (LPL) but lower osteocalcin (BGLAP) and fibronectin (FN1) expression than CaPA (P < 0.05). SCs from CaPD-fed pigs had 19% lower in vivo proliferation than in CaPA-fed pigs. CONCLUSIONS: These findings demonstrated that feeding a diet marginally deficient in calcium and phosphorus to neonatal pigs had a great impact on bone development, MSC, and SC characteristics. These dietary deficiencies may program future bone health and muscle development by altering MSC and SC activities.


Asunto(s)
Calcio de la Dieta/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Fitoquímicos/farmacología , Porcinos/fisiología , Alimentación Animal , Animales , Animales Recién Nacidos , Densidad Ósea , Desarrollo Óseo , Proliferación Celular , Femenino , Regulación de la Expresión Génica/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 112(40): E5454-60, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26351689

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway.


Asunto(s)
Colicinas/metabolismo , Colicinas/farmacología , Escherichia coli O157/efectos de los fármacos , Plantas Comestibles/metabolismo , Secuencia de Aminoácidos , Animales , Beta vulgaris/genética , Beta vulgaris/metabolismo , Colicinas/genética , Electroforesis en Gel de Poliacrilamida , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/crecimiento & desarrollo , Peces , Microbiología de Alimentos , Carne/microbiología , Datos de Secuencia Molecular , Plantas Comestibles/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Porcinos , Nicotiana/genética , Nicotiana/metabolismo
3.
BMC Vet Res ; 11: 96, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25889654

RESUMEN

BACKGROUND: Organic acids, such as citric and sorbic acid, and pure plant-derived constituents, like monoterpens and aldehydes, have a long history of use in pig feeding as alternatives to antibiotic growth promoters. However, their effects on the intestinal barrier function and inflammation have never been investigated. Therefore, aim of this study was to assess the impact of a microencapsulated mixture of citric acid and sorbic acid (OA) and pure botanicals, namely thymol and vanillin, (PB) on the intestinal integrity and functionality of weaned pigs and in vitro on Caco-2 cells. In the first study 20 piglets were divided in 2 groups and received either a basal diet or the basal diet supplemented with OA + PB (5 g/kg) for 2 weeks post-weaning at the end of which ileum and jejunum samples were collected for Ussing chambers analysis of trans-epithelial electrical resistance (TER), intermittent short-circuit current (I SC), and dextran flux. Scrapings of ileum mucosa were also collected for cytokine analysis (n = 6). In the second study we measured the effect of these compounds directly on TER and permeability of Caco-2 monolayers treated with either 0.2 or 1 g/l of OA + PB. RESULTS: Pigs fed with OA + PB tended to have reduced I SC in the ileum (P = 0.07) and the ileal gene expression of IL-12, TGF-ß, and IL-6 was down regulated. In the in vitro study on Caco-2 cells, TER was increased by the supplementation of 0.2 g/l at 4, 6, and 14 days of the experiment, whereas 1 g/l increased TER at 10 and 12 days of treatment (P < 0.05). Dextran flux was not significantly affected though a decrease was observed at 7 and 14 days (P = 0.10 and P = 0.09, respectively). CONCLUSIONS: Overall, considering the results from both experiments, OA + PB improved the maturation of the intestinal mucosa by modulating the local and systemic inflammatory pressure ultimately resulting in a less permeable intestine, and eventually improving the growth of piglets prematurely weaned.


Asunto(s)
Benzaldehídos/farmacología , Ácido Cítrico/farmacología , Inflamación/veterinaria , Ácido Sórbico/farmacología , Porcinos , Timol/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Benzaldehídos/administración & dosificación , Células CACO-2 , Ácido Cítrico/administración & dosificación , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/prevención & control , Intestinos/efectos de los fármacos , Ácido Sórbico/administración & dosificación , Timol/administración & dosificación
4.
J Nutr ; 144(12): 1935-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25320190

RESUMEN

BACKGROUND: Optimizing calcium nutrition to maximize bone accretion during growth to prevent fragility fractures later in life has spurred greater interest in calcium nutrition in neonates. OBJECTIVE: The aim of this study was to determine the effect of dietary calcium, from deficiency through excess, on bone growth, and the in vivo and in vitro behavior of mesenchymal stem cells (MSCs) in neonatal pigs. METHODS: Twenty-four male and female piglets (24 ± 6 h old) were fed either a calcium-deficient [Ca-D; 0.6% Ca on a dry matter (DM) basis], a calcium-adequate diet (Ca-A; 0.9% Ca on a DM basis), or a calcium-excessive diet (Ca-E; 1.3% Ca on a DM basis) for 14 d to assess the impact of dietary calcium on calcium homeostasis and on the behavior of MSCs. RESULTS: Growth rate was not affected by the Ca-E diet, although bone ash content was 16% higher (P < 0.05) and urinary calcium excretion was 5-fold higher, when normalized to creatinine, compared with the Ca-A group at trial completion. Serum parathyroid hormone (PTH) concentrations were elevated (P < 0.05) in Ca-D piglets in comparison with other groups at both 7 and 14 d. In vivo proliferation of MSCs was 30% higher (P < 0.05) in Ca-E piglets than the other groups. MSCs from both Ca-D- and Ca-E-fed piglets had greater adipogenic potential based on increased gene expression (P < 0.05) of peroxisome proliferator-activated receptor γ (Pparg) and adipocyte fatty acid-binding protein (Ap2) than MSCs from Ca-A piglets. Interestingly, only MSCs from Ca-E-fed piglets had greater (P < 0.05) gene expression of lipoprotein lipase (Lpl) during adipocytic differentiation than those from Ca-A piglets. To assess alterations in lineage allocation and priming, the most and least osteogenic (O+ and O-, respectively) and adipogenic (A+ and A-, respectively) colonies from each MSC isolation were selected on the basis of functional staining. The O+ colonies from Ca-D piglets expressed lower (P < 0.05) levels of osteocalcin (OC) mRNA than did those from other groups, whereas the O- colonies from Ca-E piglets expressed higher (P < 0.05) levels of mRNA of Pparg, Ap2, and Lpl than did those from other groups. CONCLUSIONS: Neonatal calcium deficiency appears to reduce the osteogenic priming of MSCs while enlarging a subpopulation of potentially adipogenic cells, and excess dietary calcium appears to allow greater multipotency of MSCs. These programming alterations of MSCs could have long-term consequences for bone health.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Calcio de la Dieta/sangre , Calcio/deficiencia , Linaje de la Célula/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Adipocitos/efectos de los fármacos , Animales , Animales Recién Nacidos , Calcio de la Dieta/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Creatinina/orina , Dieta , Relación Dosis-Respuesta a Droga , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , PPAR gamma/genética , PPAR gamma/metabolismo , Hormona Paratiroidea/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38483214

RESUMEN

The influence of systemic immune activation on whole-body calcium (Ca) trafficking and gastrointestinal tract (GIT) physiology is not clear. Thus, the study objectives were to characterize the effects of lipopolysaccharide (LPS) on Ca pools and GIT dynamics to increase understanding of immune-induced hypocalcemia, ileus, and stomach hemorrhaging. Twelve crossbred pigs [44 ±â€…3 kg body weight (BW)] were randomly assigned to 1 of 2 intramuscular treatments: (1) control (CON; 2 mL saline; n = 6) or (2) LPS (40 µg LPS/kg BW; n = 6). Pigs were housed in metabolism stalls to collect total urine and feces for 6 h after treatment administration, at which point they were euthanized, and various tissues, organs, fluids, and digesta were weighed, and analyzed for Ca content. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature and respiration rate increased in LPS relative to CON pigs (1.4 °C and 32%, respectively; P ≤ 0.05). Inflammatory biomarkers such as circulating alkaline phosphatase, aspartate aminotransferase, and total bilirubin increased in LPS compared with CON pigs whereas albumin decreased (P ≤ 0.02). Plasma glucose and urea nitrogen decreased and increased, respectively, after LPS (43% and 80%, respectively; P < 0.01). Pigs administered LPS had reduced circulating ionized calcium (iCa) compared to CON (15%; P < 0.01). Considering estimations of total blood volume, LPS caused an iCa deficit of 23 mg relative to CON (P < 0.01). Adipose tissue and urine from LPS pigs had reduced Ca compared to CON (39% and 77%, respectively; P ≤ 0.05). There did not appear to be increased Ca efflux into GIT contents and no detectable increases in other organ or tissue Ca concentrations were identified. Thus, while LPS caused hypocalcemia, we were unable to determine where circulating Ca was trafficked. LPS administration markedly altered GIT dynamics including stomach hemorrhaging, diarrhea (increased fecal output and moisture), and reduced small intestine and fecal pH (P ≤ 0.06). Taken together, changes in GIT physiology suggested dyshomeostasis and alimentary pathology. Future research is required to fully elucidate the etiology of immune activation-induced hypocalcemia and GIT pathophysiology.


Lipopolysaccharide (LPS) activates the immune system and this is accompanied with hypocalcemia and altered gastrointestinal tract (GIT) physiology. The study objectives were to characterize whole-body calcium (Ca) trafficking and evaluate GIT dynamics during LPS-induced immune activation. Ca concentrations were analyzed after intramuscular LPS injection. Administering LPS caused marked alterations in metabolic and inflammatory biomarkers and GIT dynamics, characterized by increased lower GIT motility and stomach hemorrhaging. Circulating Ca and adipose tissue and urine Ca output were decreased after LPS. Ca concentrations in other tissues and GIT contents were not detectably different. Thus, we were unable to account for about 110 mg Ca following LPS. Where and how circulating Ca is partitioned during immune activation remains unclear.


Asunto(s)
Calcio , Tracto Gastrointestinal , Lipopolisacáridos , Animales , Femenino , Masculino , Calcio/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Lipopolisacáridos/farmacología , Distribución Aleatoria , Porcinos , Enfermedades de los Porcinos/inducido químicamente
6.
Antioxidants (Basel) ; 12(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37237906

RESUMEN

This study investigated intestinal oxidative damage caused by F18+Escherichia coli and its amelioration with antibacterial bacitracin fed to nursery pigs. Thirty-six weaned pigs (6.31 ± 0.08 kg BW) were allotted in a randomized complete block design. Treatments were: NC, not challenged/not treated; PC, challenged (F18+E. coli at 5.2 × 109 CFU)/not treated; AGP challenged (F18+E. coli at 5.2 × 109 CFU)/treated with bacitracin (30 g/t). Overall, PC reduced (p < 0.05) average daily gain (ADG), gain to feed ratio (G:F), villus height, and villus height to crypt depth ratio (VH:CD), whereas AGP increased (p < 0.05) ADG, and G:F. PC increased (p < 0.05) fecal score, F18+E. coli in feces, and protein carbonyl in jejunal mucosa. AGP reduced (p < 0.05) fecal score and F18+E. coli in jejunal mucosa. PC reduced (p < 0.05) Prevotella stercorea populations in jejunal mucosa, whereas AGP increased (p < 0.05) Phascolarctobacterium succinatutens and reduced (p < 0.05) Mitsuokella jalaludinii populations in feces. Collectively, F18+E. coli challenge increased fecal score and disrupted the microbiota composition, harming intestinal health by increasing oxidative stress, and damaging the intestinal epithelium, ultimately impairing growth performance. Dietary bacitracin reduced reduced F18+E. coli populations and the oxidative damages they cause, thereby improving intestinal health and the growth performance of nursery pigs.

7.
J Nutr ; 141(3): 373-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21248192

RESUMEN

The effects of dietary calcium (Ca) deficiency on skeletal integrity are well characterized in growing and mature mammals; however, less is known about Ca nutrition during the neonatal period. In this study, we examined the effects of neonatal Ca nutrition on bone integrity, endocrine hormones, and mesenchymal stem cell (MSC) activity. Neonatal pigs (24 ± 6 h of age) received either a Ca-adequate (1.2 g/100 g) or an ~40% Ca-deficient diet for 18 d. Ca deficiency reduced (P < 0.05) bone flexural strength and bone mineral density without major differences in plasma indicators of Ca status. There were no meaningful differences in plasma Ca, phosphate (PO(4)), parathyroid hormone, or 1,25-dihydroxycholecalciferol due to Ca nutrition throughout the study. Calcium deficiency also reduced (P < 0.05) the in vivo proliferation of MSC by ~50%. In vitro studies utilizing homologous sera demonstrated that MSC activity was affected (P < 0.05) by both the Ca status of the pig and the sera as well as by their interaction. The results indicate that neonatal Ca nutrition is crucial for bone integrity and suggest that early-life Ca restriction may have long-term effects on bone integrity via programming of MSC.


Asunto(s)
Desarrollo Óseo , Calcio/deficiencia , Células Madre Mesenquimatosas/metabolismo , Estado Nutricional , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Animales , Animales Recién Nacidos , Densidad Ósea , Huesos/química , Calcitriol/sangre , Calcio/sangre , Calcio de la Dieta/administración & dosificación , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Masculino , Fenómenos Mecánicos , Células Madre Mesenquimatosas/citología , Hormona Paratiroidea/sangre , ARN Mensajero/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Sus scrofa
8.
Cells ; 10(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34943981

RESUMEN

Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína MioD/genética , Factor de Transcripción PAX7/genética , Células Satélite del Músculo Esquelético/efectos de los fármacos , Triglicéridos/farmacología , Animales , Butiratos/química , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Hipertrofia/genética , Hipertrofia/patología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Profármacos/química , Profármacos/farmacología , ARN Interferente Pequeño/farmacología , Células Satélite del Músculo Esquelético/metabolismo , Porcinos
9.
J Nutr ; 140(3): 477-82, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20053936

RESUMEN

Although mesenchymal stem cells (MSC) and satellite cells are essential for postnatal muscle and bone development and phosphate (PO(4)) restriction reduces both muscle and skeletal tissue growth, no research to our knowledge has investigated the possible mechanism by which this mineral may affect early cell programming. Twenty piglets obtained at 1 d of age (1.8 +/- 0.3 kg) received either a PO(4)-adequate diet or a 25% less PO(4)-available diet over a 15-d trial. Feed intake and body weight were recorded daily and blood samples collected every 5 d. After 15 d, pigs were given an intraperitoneal injection of bromodeoxyuridine 4 h prior to tissue collection. As expected, PO(4) deficiency resulted in reduced growth (P < 0.05), feed conversion efficiency (P < 0.05), and bone mineral content (P < 0.05), as well as lower plasma concentrations of both PO(4) (P < 0.01) and parathyroid hormone (P < 0.05). In addition to these classical indicators of PO(4) deficiency, there was also reduced proliferation of both MSC (P < 0.01) and satellite cells (P < 0.05) in vivo. The expression of osteocalcin mRNA in bone marrow was also 2-fold greater (P < 0.01) within the PO(4)-adequate treatment group. These data indicate that in addition to reductions in muscle and bone growth, dietary PO(4) affects proliferation of tissue-specific stem cells in vivo. Nutritional programming of tissue-specific stem cells by dietary PO(4) may have profound implications for life-long growth potential.


Asunto(s)
Alimentación Animal/análisis , Proliferación Celular/efectos de los fármacos , Dieta/veterinaria , Células Madre Mesenquimatosas/efectos de los fármacos , Fósforo Dietético/farmacología , Porcinos/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Densidad Ósea/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Fósforo/deficiencia , Aumento de Peso/efectos de los fármacos
10.
In Vitro Cell Dev Biol Anim ; 55(1): 17-24, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30456456

RESUMEN

Butyric acid (BA) affects the differentiation of mesenchymal stem cells (MSC) through the activation of different transcriptional pathways. The aim of this study was to determine the effects of BA on proliferation and spontaneous differentiation of porcine bone marrow-derived MSC. Second passage MSC (n = 6) were cultured in either a basal medium (BM, DMEM + 10% FBS), or BM + 2.5 mmol/L BA (BA-2.5) or BM + 5 mmol/L BA (BA-5). Cell proliferation was significantly decreased by both BA-2.5 and BA-5 after 48 h and 72 h (- 55% and - 63%, respectively). To assess the impact of BA on spontaneous differentiation, MSC were cultured for 27 d, with complete media changes every 3 d. At day 27, cells were stained for osteocytic, chondrocytic, and adipocytic differentiation. No terminal differentiation was detected in control MSC, while accumulated small drops of lipids were stained by Oil-Red-O in BA-treated cells. The phenotypic changes were associated with changes in gene expression, determined by qPCR. Treatment with BA modulated the expression of adipocytic differentiation markers: peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α were significantly increased by both BA-2.5 and BA-5 throughout the study, while lipoprotein lipase and fatty acid-binding protein 4 were increased by BA-5 at day 3, and decreased by both BA-5 and BA-2.5 later throughout the study. Osteocalcin and aggrecan mRNA was reduced throughout the experiment by both doses of BA (P < 0.05). In conclusion, our data support that BA promotes the spontaneous differentiation of porcine bone marrow-derived MSC toward an adipocytic lineage in the absence of inducing cocktail media.


Asunto(s)
Adipocitos/citología , Células de la Médula Ósea/citología , Ácido Butírico/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inmunofenotipificación , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Porcinos
11.
J Nutr ; 138(7): 1293-7, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18567750

RESUMEN

Recent studies describe an association between poor iron status and obesity in humans, although the mechanism explaining this relationship is unclear. The present study aimed to determine the effect of moderate iron deficiency and physical activity (PA) on body composition in an animal model. Male Sprague-Dawley rats consumed iron-adequate (IA; 40 mg/kg) or moderately iron-deficient (ID; 9 mg/kg) diets ad libitum for 12 wk. Rats were assigned to 4 treatment groups (n = 10 per group): IA, sedentary (IAS); IA, PA (IAPA); ID, sedentary (IDS); or ID, PA (IDPA). Activity involved running on motorized running wheels at 4 m/min for 1 h/d for 5 d/wk. After 12 wk, ID rats were not anemic, but body iron stores were reduced as indicated by diminished (P < 0.05) femur iron compared with IA rats. Treatment group did not affect body weight or feed consumption. However, fat mass was greater (P < 0.05) in IDS rats (38.6 +/- 6.7%) than IAS (31.8 +/- 2.9%), IAPA (31.8 +/- 2.0%), and IDPA (32.8 +/- 4.5%) rats. Furthermore, lean body mass was diminished in IDS rats (58.7 +/- 6.8%) compared with IAS (65.6 +/- 3.0%), IAPA (65.6 +/- 2.1%), and IDPA (64.7 +/- 4.5%) rats. Thus, moderate iron deficiency may cause increased body fat accretion in rats and PA attenuates that effect.


Asunto(s)
Tejido Adiposo/anatomía & histología , Deficiencias de Hierro , Actividad Motora/fisiología , Animales , Glucemia/metabolismo , Composición Corporal , Peso Corporal , Densidad Ósea , Ingestión de Alimentos , Humanos , Insulina/sangre , Hierro de la Dieta/administración & dosificación , Masculino , Modelos Animales , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Carrera/fisiología
12.
J Food Prot ; 71(12): 2519-22, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19244907

RESUMEN

Colicin E1 (ColE1) is a bacteriocin produced by and effective against Escherichia coli and related species. The current study examined ColE1 as a potential intervention strategy for controlling E. coli O157:H7 contamination on beef carcasses. Untrimmed beef round roasts were cut into sample sizes of 5.08 by 2.52 by 5.08 cm, with an adipose layer covering an entire surface of lean beef. Samples were placed on sterile metal hooks and inoculated with E. coli O157:H7 at a level of 5 log CFU/ml in sterile tryptic soy broth. After inoculum attachment, ColE1 in doses of 0, 100 microg, 500 microg, and 1 mg/ml of 10 mM Tris, pH 7.6, was sprayed on the samples for a period of 10 min. Samples were evaluated at 0 and 30 min, 1, 2, 3, 4, and 5 days post-spraying at 10 degrees C for E. coli O157:H7 inhibition. Treating samples with 500 microg and 1 mg of ColE1 effectively inhibited E. coli O157:H7 growth. When these doses were applied to samples inoculated with E. coli WS 3331, E. coli contamination was reduced by 4 and 7 log CFU/cm2, respectively, compared with the untreated control samples. In strain WS 3331, treatment with 1 mg ColE1 significantly inhibited growth of E. coli O157:H7 compared with the untreated control during the entire study. ColE1 provided powerful reduction of E. coli O157:H7 as a beef carcass spray intervention.


Asunto(s)
Colicinas/farmacología , Desinfectantes/farmacología , Escherichia coli O157/efectos de los fármacos , Manipulación de Alimentos/métodos , Carne/microbiología , Animales , Bovinos , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Humanos , Factores de Tiempo
13.
Physiol Rep ; 6(10): e13706, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29845774

RESUMEN

Muscle growth and repair rely on two main mechanisms - myonuclear accretion and subsequent protein accumulation. Altering the ability of muscle resident stem cells (satellite cells) to progress through their myogenic lineage can have a profound effect on lifetime muscle growth and repair. The use of the histone deacetylase (HDAC) inhibitor, butyrate, has had positive outcomes on the in vitro promotion of satellite cell myogenesis. In animal models, the use of butyrate has had promising results in treating myopathic conditions as well as improving growth efficiency, but the impact of dietary butyrate on satellite cells and muscle growth has not been elucidated. We investigated the impact of tributyrin, a butyrate prodrug, on satellite cell activity and muscle growth in a piglet model. Satellite cells from tributyrin-treated piglets had altered myogenic potential, and piglets receiving tributyrin had a ~40% increase in DNA:protein ratio after 21 days, indicating the potential for enhanced muscle growth. To assess muscle growth potential, piglets were supplemented tributyrin (0.5%) during either the neonatal phase (d1-d21) and/or the nursery phase (d21-d58) in a 2 × 2 factorial design. Piglets who received tributyrin during the neonatal phase had improved growth performance at the end of the study and had a ~10% larger loin eye area and muscle fiber cross-sectional area. Tributyrin treatment in the nursery phase alone did not have a significant effect on muscle growth or feed efficiency. These findings suggest that tributyrin is a potent promoter of muscle growth via altered satellite cell myogenesis.


Asunto(s)
Inhibidores de Histona Desacetilasas/administración & dosificación , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/fisiología , Triglicéridos/administración & dosificación , Animales , Diferenciación Celular/efectos de los fármacos , ADN/metabolismo , Suplementos Dietéticos , Femenino , Expresión Génica/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/citología , Miogenina/metabolismo , Porcinos
14.
J Nutr Biochem ; 18(12): 813-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17475464

RESUMEN

To guide development of novel nutritional strategies aimed at reducing the incidence of stress fractures, we observed the effects of manipulating dietary zinc (Zn) content on bone integrity in Sprague-Dawley rats fed either a severely Zn-deficient (ZnD; 1 ppm), a moderately Zn-deficient (MZnD; 5 ppm) or a Zn-adequate (ZnAD; 30 ppm) diet for 6 weeks. At the completion of the diet period, body composition, bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were determined in vivo by using dual-energy X-ray absorptiometry. Following euthanasia, long bones were collected for determination of Zn content and biomechanical strength testing. Despite significant positive correlations between dietary Zn and both body weight (BW) and bone Zn content for the entire cohort (r = .77 and r = .83, respectively), rats fed MZnD or ZnAD diets did not differ in feed intakes, body composition, BMC, BA, BMD or BW. Tibial bones, but not femur bones, appear to be more responsive to dietary Zn manipulation, as all bone biomechanical strength indices in the ZnAD-fed rats were significantly greater than in rats fed the ZnD diets. Rats fed either MZnD or ZnAD diets had stronger tibiae (129% increase in maximum load and stress at maximum load, P<.01) compared with those fed ZnD diets. The load at breakage for the tibial bones of rats fed MZnD diets was not different from the ZnD rats, but lower (P<.05) than that of the ZnAD rats. These results suggest that since feed intakes, body composition, BMC, BA, BMD and BW were not significantly different between the MZnD- and ZnAD-fed animals, the reduced bone integrity observed in the MZnD-fed rats resulted from dietary Zn inadequacy, and not as a result of the reduced growth that is typically associated with Zn deficiency.


Asunto(s)
Enfermedades Carenciales/fisiopatología , Tibia/fisiopatología , Aumento de Peso/efectos de los fármacos , Zinc/farmacología , Animales , Fenómenos Biomecánicos , Composición Corporal , Dieta , Modelos Animales de Enfermedad , Ingestión de Energía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tibia/efectos de los fármacos
15.
J Food Prot ; 70(5): 1256-62, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17536690

RESUMEN

Colicins are gram-negative bacteriocins produced by and effective against Escherichia coli and related species. Colicin E1 (ColE1) is composed of three functional domains, which collectively have a pore-forming effect on targeted bacteria. ColE1 binding and translocation domains are highly specific in contrast to the pore-forming domain, implying that ColE1 could be broadly effective. In this study, the activity of ColE1 against Listeria monocytogenes was evaluated in broth and on surfaces of ready-to-eat products. Individual strains of L. monocytogenes were examined in broth containing ColE1 at 0, 0.1, 1, or 10 microg/ml. Although strain differences in sensitivity to ColE1 existed, growth was significantly reduced in all strains at doses as low as 0.1 microg/ml. Sterilized ham slices were submerged in a five-strain L. monocytogenes cocktail (either 7 or 4 log CFU/ ml) and placed in vacuum packages containing 0, 1, 5, 10, 25, or 50 microg of ColE1. Ham slices were then stored at 4 or 10 degrees C, and samples were removed and examined for L. monocytogenes after 1, 3, 7, and 14 days. Reduction of L. monocytogenes by ColE1 was dependent on initial inoculum concentration and storage temperature. For slices stored at 4 degrees C, treatment with 25 microg reduced Listeria growth below detection limits for the slices inoculated with 4 log CFU/ml for the entire 14 days, whereas for the 7-log CFU/ml slices, growth was detected at 7 days postinoculation. For slices stored at 10 degrees C, 10 microg/ml ColE1 significantly inhibited growth of L. monocytogenes for up to 3 days for both inoculation groups. These data indicate that ColE1 is highly effective against Listeria.


Asunto(s)
Colicinas/farmacología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Productos de la Carne/microbiología , Animales , Traslocación Bacteriana , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Humanos , Listeria monocytogenes/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Temperatura , Factores de Tiempo
16.
J Nutr Biochem ; 17(6): 385-95, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16311027

RESUMEN

Dietary phosphorus (P) is essential to bone growth and turnover; however, little research has focused on the genetic mechanisms controlling P utilization. Understanding the interactions between genetics and dietary P that optimize bone integrity could provide novel interventions for osteoporosis. Thirty-six pigs from two sire lines known to differ in bone structure [heavier boned (HB) and lighter boned (LB)] were assigned to one of the three diets (P adequate, P repletion or P deficient). After 14 days, bone marrow and intact radial bones were collected. Differences between these lines in growth rate, bone integrity and gene expression within bone marrow were observed. In HB, but not LB, pigs, the P-deficient diet decreased weight gain (P<.01). For both lines, P deficiency caused a reduction in radial bone strength (P<.01), but HB P-deficient animals had greater (P<.10) bone integrity than P-deficient LB pigs. In HB, but not LB, pigs, dietary treatment affected the expression of CALCR (calcitonin receptor) (P<.05), VDR (vitamin D receptor) (P<.04) and IGFBP3 (insulin-like growth factor binding protein 3) (P<.06). There was also a trend of increased IL6 (interleukin-6), TFIIB (transcription initiation factor IIB) and SOX9 (sex determining region Y-box 9) expression with P deficiency in HB, but not LB, pigs. Both genetic backgrounds responded similarly to P deficiency with an increase in the expression of OXTR (oxytocin receptor) and IGF1 (insulin-like growth factor 1). Differences in growth rate, bone integrity and gene expression within the bone marrow suggest a difference in the homeorhetic control of P utilization between these genetic lines. Understanding these differences could lead to novel treatments for osteoporosis and aid in the development of tests for identifying those at risk for this disease.


Asunto(s)
Genotipo , Osteoporosis/genética , Fósforo Dietético/administración & dosificación , Fósforo/deficiencia , Animales , Huesos/fisiopatología , Calcio/sangre , Femenino , Proteínas del Grupo de Alta Movilidad/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Receptores de Calcitonina/genética , Receptores de Calcitriol/genética , Receptores de Oxitocina/genética , Factor de Transcripción SOX9 , Porcinos , Resistencia a la Tracción , Factor de Transcripción TFIIB/genética , Factores de Transcripción/genética
17.
J Nutr Biochem ; 17(3): 190-6, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16214325

RESUMEN

Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.


Asunto(s)
6-Fitasa/administración & dosificación , Composición Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Dieta , Aumento de Peso/efectos de los fármacos , Zinc/administración & dosificación , Absorciometría de Fotón , Animales , Fenómenos Biomecánicos , Densidad Ósea/efectos de los fármacos , Fémur , Masculino , Ratas , Ratas Sprague-Dawley , Tibia
18.
Methods Mol Biol ; 1396: 115-124, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26676042

RESUMEN

In vivo responses to bacterially derived superantigen-like toxins have been difficult to define due to the inherent limitations with rodent models and the relevance that the results obtained from such models may, or may not, have for human pathophysiology. Further the use of challenge doses of superantigen toxins that are lethal or supra-lethal complicates analogies to human exposures which are rarely fatal. Here, we utilize the superantigen, staphylococcal enterotoxin B, at doses that are sublethal in a swine model of toxin-induced incapacitation. Relevant dosing using an animal species for which this toxin is a true superantigen distinguishes this model.


Asunto(s)
Modelos Animales de Enfermedad , Enterotoxinas/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Superantígenos/inmunología , Animales , Mediadores de Inflamación/sangre , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/mortalidad , Porcinos
19.
Annu Rev Anim Biosci ; 2: 419-44, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25384150

RESUMEN

The neonatal pig ranks among the most prominent research models for the study of pediatric nutrition and metabolism. Its precocial development at birth affords ready adaptation to artificial rearing systems, and research using this model spans a wide array of nutrients. Sophisticated in vitro and in vivo methodologies supporting both invasive, reduction-science research as well as whole-animal preclinical investigations have been developed. Potential applications may dually benefit both agricultural and medical sciences (e.g., "agrimedical research"). The broad scope of this review is to outline the fundamental elements of the piglet model and to highlight key aspects of relevance to various macronutrients, including lipids, carbohydrates, proteins/amino acids, and calcium/phosphorus. The review examines similarities between piglets and infants and also piglet idiosyncrasies, concluding that, overall, the piglet represents an adaptable and robust model for pediatric nutrition and metabolism research.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Fenómenos Fisiológicos Nutricionales Infantiles , Porcinos/fisiología , Animales , Animales Lactantes , Niño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA