Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089332

RESUMEN

Biomedical data are becoming increasingly multimodal and thereby capture the underlying complex relationships among biological processes. Deep learning (DL)-based data fusion strategies are a popular approach for modeling these nonlinear relationships. Therefore, we review the current state-of-the-art of such methods and propose a detailed taxonomy that facilitates more informed choices of fusion strategies for biomedical applications, as well as research on novel methods. By doing so, we find that deep fusion strategies often outperform unimodal and shallow approaches. Additionally, the proposed subcategories of fusion strategies show different advantages and drawbacks. The review of current methods has shown that, especially for intermediate fusion strategies, joint representation learning is the preferred approach as it effectively models the complex interactions of different levels of biological organization. Finally, we note that gradual fusion, based on prior biological knowledge or on search strategies, is a promising future research path. Similarly, utilizing transfer learning might overcome sample size limitations of multimodal data sets. As these data sets become increasingly available, multimodal DL approaches present the opportunity to train holistic models that can learn the complex regulatory dynamics behind health and disease.


Asunto(s)
Aprendizaje Profundo
2.
Stem Cells ; 41(9): 850-861, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37357747

RESUMEN

Revolutionary advances in AI and deep learning in recent years have resulted in an upsurge of papers exploring applications within the biomedical field. Within stem cell research, promising results have been reported from analyses of microscopy images to, that is, distinguish between pluripotent stem cells and differentiated cell types derived from stem cells. In this work, we investigated the possibility of using a deep learning model to predict the differentiation stage of pluripotent stem cells undergoing differentiation toward hepatocytes, based on morphological features of cell cultures. We were able to achieve close to perfect classification of images from early and late time points during differentiation, and this aligned very well with the experimental validation of cell identity and function. Our results suggest that deep learning models can distinguish between different cell morphologies, and provide alternative means of semi-automated functional characterization of stem cell cultures.


Asunto(s)
Inteligencia Artificial , Células Madre Pluripotentes , Humanos , Diferenciación Celular , Hepatocitos/metabolismo , Técnicas de Cultivo de Célula/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA