Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 10267, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986381

RESUMEN

Tropical corals and Amphistegina, an example genus of symbiont-bearing larger benthic foraminifera, are presently living close to their thermal bleaching thresholds. As such, these essential reef-building organisms are vulnerable to the future prospect of more frequent sea surface temperature (SST) extremes. Exploring the earth's paleo-climatic record, including interglacials warmer than present, may provide insights into future oceanographic conditions. We analyse foraminiferal shell geochemical compositions, from Recent surface sediments and Marine Isotope stage (MIS) 9e and MIS11c aged sediments, from the International Ocean Discovery Program Expedition 359 Site U1467 drilled in the Inner Sea of the Maldives. We illustrate through traditional (pooled) geochemical analysis (δ18O, Mg/Ca) that tropical temperatures were indeed marginally warmer during MIS9e and MIS11c in comparison to the modern ocean. Individual foraminiferal analysis (IFA) from the Recent (representing the last few hundred years) and MIS9e samples shows SSTs occasionally breached the coral bleaching threshold similarly to the modern-day. Significantly, the number of transgressions was four times higher during MIS11c, a recognised analogue for a warmer modern world. This new knowledge and novel IFA insight and application is invaluable given thermal stress is already obvious today with an increasing number of bleaching events over the last few decades.

2.
PeerJ ; 8: e8839, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292648

RESUMEN

Foraminifera are protozoans with biomineralized tests that can be successfully used as a low cost monitoring tool to assess the health status of marine environments. Living benthic foraminiferal assemblages can provide essential information on natural and/or anthropogenic stresses and provide baseline conditions for studies on fossil material. Several studies have highlighted the negative impact of phosphate treatment industries along the Gulf of Gabes (Lesser Syrtis, Tunisia) on the marine environment. However, only a few studies, based on living (stained) benthic foraminifera, are presently available to assess environmental and/or ecological conditions in this Gulf. Thirty-eight surface sediment samples were quantitatively investigated to identify the dominant living benthic foraminiferal species and potential pollution-sensitive and stress-tolerant species. One-hundred and sixty-one species were identified, and grouped into seven clusters representing different environments within the Gulf. These groups represent polluted settings (Cluster A and B), polluted environments characterized by physicochemical variability (Cluster C), seagrass meadows and "pristine" sites (Cluster D and E) and the region subjected to major industrial impact (Cluster F). The final outlier Cluster, identified the foraminifera barren and all shallow coastal stations. A SIMPER analysis helped identify species with clear and fast responses to environmental perturbations (Ammonia tepida, Amphistegina lessonii, Brizalina striatula, Bulimina marginata, Buliminella elegantissima, Eggereloides scaber, Peneroplis perutusus, Rosalina macropora, Rosalina villardeboana, Trochammina inflata). A comparison with the measured geochemical parameters (TOC, phosphorus in the sediments and heavy metal concentrations in the seawater) has shown that the benthic foraminiferal assemblages are mainly linked to phosphorus, TOC, As and Cd pollution. We also provide here the first compilation of the identified living species in the Lesser Syrtis, their synonyms and digital images of important species.

3.
PLoS One ; 14(9): e0222299, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31513624

RESUMEN

Within the world's oceans, regionally distinct ecological niches develop due to differences in water temperature, nutrients, food availability, predation and light intensity. This results in differences in the vertical dispersion of planktonic foraminifera on the global scale. Understanding the controls on these modern-day distributions is important when using these organisms for paleoceanographic reconstructions. As such, this study constrains modern depth habitats for the northern equatorial Indian Ocean, for 14 planktonic foraminiferal species (G. ruber, G. elongatus, G. pyramidalis, G. rubescens, T. sacculifer, G. siphonifera, G. glutinata, N. dutertrei, G. bulloides, G. ungulata, P. obliquiloculata, G. menardii, G. hexagonus, G. scitula) using stable isotopic signatures (δ18O and δ13C) and Mg/Ca ratios. We evaluate two aspects of inferred depth habitats: (1) the significance of the apparent calcification depth (ACD) calculation method/equations and (2) regional species-specific ACD controls. Through a comparison with five global, (sub)tropical studies we found the choice of applied equation and δ18Osw significant and an important consideration when comparing with the published literature. The ACDs of the surface mixed layer and thermocline species show a tight clustering between 73-109 m water depth coinciding with the deep chlorophyll maximum (DCM). Furthermore, the ACDs for the sub-thermocline species are positioned relative to secondary peaks in the local primary production. We surmise that food source plays a key role in the relative living depths for the majority of the investigated planktonic foraminifera within this oligotrophic environment of the Maldives and elsewhere in the tropical oceans.


Asunto(s)
Monitoreo del Ambiente/métodos , Foraminíferos/clasificación , Plancton/clasificación , Calcinosis/epidemiología , Calcinosis/metabolismo , Isótopos de Calcio/análisis , Ecosistema , Océano Índico , Islas del Oceano Índico , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA