Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2217946120, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877845

RESUMEN

Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored. Here, we present high-precision noble gas isotope and elemental ratios from the deep North Atlantic (~32°N, 64°W) to evaluate gas exchange parameterizations using an ocean circulation model. The unprecedented precision of these data reveal deep-ocean undersaturation of heavy noble gases and isotopes resulting from cooling-driven air-to-sea gas transport associated with deep convection in the northern high latitudes. Our data also imply an underappreciated and large role for bubble-mediated gas exchange in the global air-sea transfer of sparingly soluble gases, including O2, N2, and SF6. Using noble gases to validate the physical representation of air-sea gas exchange in a model also provides a unique opportunity to distinguish physical from biogeochemical signals. As a case study, we compare dissolved N2/Ar measurements in the deep North Atlantic to physics-only model predictions, revealing excess N2 from benthic denitrification in older deep waters (below 2.9 km). These data indicate that the rate of fixed N removal in the deep Northeastern Atlantic is at least three times higher than the global deep-ocean mean, suggesting tight coupling with organic carbon export and raising potential future implications for the marine N cycle.

2.
Nature ; 553(7686): 30-31, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32094519
3.
Nature ; 553(7686): 30-31, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29300037
4.
Anal Chem ; 88(6): 3040-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26854788

RESUMEN

Noble gases dissolved in natural waters are useful tracers for quantifying physical processes. Here, we describe a field-deployable gas equilibration mass spectrometer (GEMS) that provides continuous, real-time measurements of Ne, Ar, Kr, and Xe mole ratios in natural waters. Gas is equilibrated with a membrane contactor cartridge and measured with a quadrupole mass spectrometer, after in-line purification with reactive metal alloy getters. We use an electron energy of 35 V for Ne to eliminate isobaric interferences, and a higher electron energy for the other gases to improve sensitivity. The precision is 0.7% or better and 1.0% or better for all mole ratios when the instrument is installed in a temperature-controlled environment and a variable-temperature environment, respectively. In the lab, the accuracy is 0.9% or better for all gas ratios using air as the only calibration standard. In the field (and/or at greater levels of disequilbrium), the accuracy is 0.7% or better for Ne/Kr, Ne/Ar, and Ar/Kr, and 2.5% or better for Ne/Xe, Ar/Xe, and Kr/Xe using air as the only calibration standard. The field accuracy improves to 0.6% or better for Ne/Xe, Ar/Xe, and Kr/Xe when the data is calibrated using discrete water samples run on a laboratory-based mass spectrometer. The e-folding response time is 90-410 s. This instrument enables the collection of a large number of continuous, high-precision and accuracy noble gas measurements at substantially reduced cost and labor compared to traditional methods.

5.
New Phytol ; 205(1): 182-91, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25382393

RESUMEN

This study explores some of the physiological mechanisms responsible for high productivity near the shelf in the Western Antarctic Peninsula despite a short growing season and cold temperature. We measured gross and net primary production at Palmer Station during the summer of 2012/2013 via three different techniques: incubation with H2 (18) O; incubation with (14) CO2 ; and in situ measurements of O2 /Ar and triple oxygen isotope. Additional laboratory experiments were performed with the psychrophilic diatom Fragilariopsis cylindrus. During the spring bloom, which accounted for more than half of the seasonal gross production at Palmer Station, the ratio of net-to-gross production reached a maximum greater than c. 60%, among the highest ever reported. The use of multiple techniques showed that these high ratios resulted from low heterotrophic respiration and very low daylight autotrophic respiration. Laboratory experiments revealed a similar ratio of net-to-gross O2 production in F. cylindrus and provided the first experimental evidence for an important level of cyclic electron flow (CEF) in this organism. The low ratio of community respiration to gross primary production observed during the bloom at Palmer Station may be characteristic of high latitude coastal ecosystems and partially supported by a very active CEF in psychrophilic phytoplankton.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Eutrofización , Estaciones del Año , Regiones Antárticas , Biomasa , Respiración de la Célula , Clorofila/metabolismo , Clorofila A , Luz , Isótopos de Oxígeno , Fotosíntesis , Fitoplancton/crecimiento & desarrollo , Factores de Tiempo
6.
Nat Commun ; 7: 12881, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27666199

RESUMEN

Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA