Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 705: 108892, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33930377

RESUMEN

Exhaustive physical exercises are potentially dangerous for human's physical health and may lead to chronic heart disease. Therefore, individuals involved in such activity require effective and safe cardioprotectors. The goal of this research was to study Mildronate (a cardioprotective drug) effect on the level of oxidative stress markers in hearts of mice under conditions of exhausting physical exercise, such as forced swimming for 1 h per day for 7 days. Forced swimming lead to mtDNA damage accumulation, increase in diene conjugates level and loss of reduced glutathione despite an increase in antioxidant genes expression and activation of mitochondrial biogenesis. Mildronate treatment reduced oxidative stress, probably due to the inhibition of fatty acids transport to mitochondria and an increase in the intensity of glucose oxidation, which in part confirms by increase in glucose transporter expression. Thus, we can assume that Mildronate is an effective cardioprotector in exhaustive physical exercises.


Asunto(s)
ADN Mitocondrial/metabolismo , Metilhidrazinas/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal/efectos adversos , Animales , Antioxidantes/metabolismo , Citoprotección/efectos de los fármacos , Masculino , Ratones
2.
Hum Mol Genet ; 27(16): 2874-2892, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29860433

RESUMEN

Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aß) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aß burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.


Asunto(s)
Elementos de Respuesta Antioxidante/genética , Factor 2 Relacionado con NF-E2/genética , Agregación Patológica de Proteínas/tratamiento farmacológico , Tauopatías/tratamiento farmacológico , Tiamina/análogos & derivados , Péptidos beta-Amiloides/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Ratones Transgénicos , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Transducción de Señal/efectos de los fármacos , Tauopatías/genética , Tauopatías/fisiopatología , Tiamina/administración & dosificación , Proteínas tau/genética
3.
Pestic Biochem Physiol ; 169: 104675, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828362

RESUMEN

Bumblebees are important for crop pollination. Currently, the number of pollinators is decreasing worldwide, which is attributed mostly to the widespread use of pesticides. The aim of this work was to develop a method for assessing the genotoxicity of pesticides for the Bombus terrestris L. bumblebee using long-range PCR of mitochondrial DNA fragments. We have developed a panel of primers and assessed the genotoxicity of the following pesticides: imidacloprid, rotenone, deltamethrin, difenocanozole, malathion, metribuzin, penconazole, esfenvalerate, and dithianon. All pesticides (except imidacloprid) inhibited mitochondrial respiration fueled by pyruvate + malate; the strongest effect was observed for rotenone and difenocanozole. Three pesticides (dithianon, rotenone, and difenocanozole) affected the rate of H2O2 production. To study the pesticide-induced DNA damage in vitro and in vivo, we used three different mtDNA. The mtDNA damage was observed for all studied pesticides. Most of the studied pesticides caused significant damage to mtDNA in vitro and in vivo when ingested. Our results indicate that all tested pesticides, including herbicides and fungicides, can have a toxic effect on pollinators. However, the extent of pesticide-induced mtDNA damage in the flight muscles was significantly less upon the contact compared to the oral administration.


Asunto(s)
ADN Mitocondrial , Plaguicidas , Animales , Abejas , Peróxido de Hidrógeno , Mitocondrias , Polinización
4.
J Cell Sci ; 130(21): 3713-3727, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864766

RESUMEN

cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca2+ signaling.


Asunto(s)
Adenilil Ciclasas/metabolismo , Señalización del Calcio , Calcio/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Adenilil Ciclasas/genética , Animales , Fraccionamiento Celular , Línea Celular , Retículo Endoplásmico/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Consumo de Oxígeno
5.
Arch Insect Biochem Physiol ; 102(1): e21595, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31276240

RESUMEN

Honey bees Apis mellifera L. are one of the most studied insect species due to their economic importance. The interest in studying honey bees chiefly stems from the recent rapid decrease in their world population, which has become a problem of food security. Nevertheless, there are no systemic studies on the properties of the mitochondria of honey bee flight muscles. We conducted a research of the mitochondria of the flight muscles of A. mellifera L. The influence of various organic substrates on mitochondrial respiration in the presence or absence of adenosine diphosphate (ADP) was investigated. We demonstrated that pyruvate is the optimal substrate for the coupled respiration. A combination of pyruvate and glutamate is required for the maximal respiration rate. We also show that succinate oxidation does not support the oxidative phosphorylation and the generation of membrane potential. We also studied the production of reactive oxygen species by isolated mitochondria. The greatest production of H2 O2 (as a percentage of the rate of oxygen consumed) in the absence of ADP was observed during the respiration supported by α-glycerophosphate, malate, and a combination of malate with another NAD-linked substrate. We showed that honey bee flight muscle mitochondria are unable to uptake Ca2+ -ions. We also show that bee mitochondria are able to oxidize the respiration substrates effectively at the temperature of 50°Ð¡ compared to Bombus terrestris mitochondria, which were more adapted to lower temperatures.


Asunto(s)
Abejas/metabolismo , Mitocondrias Musculares/metabolismo , Animales , Calcio/metabolismo , Respiración de la Célula , Femenino , Vuelo Animal , Peróxido de Hidrógeno/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Músculos/metabolismo , Temperatura
6.
Biochim Biophys Acta Bioenerg ; 1859(6): 423-433, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550215

RESUMEN

Recent evidence highlights a role for sex and hormonal status in regulating cellular responses to ischemic brain injury and neurodegeneration. A key pathological event in ischemic brain injury is the opening of a mitochondrial permeability transition pore (MPT) induced by excitotoxic calcium levels, which can trigger irreversible damage to mitochondria accompanied by the release of pro-apoptotic factors. However, sex differences in brain MPT modulation have not yet been explored. Here, we show that mitochondria isolated from female mouse forebrain have a lower calcium threshold for MPT than male mitochondria, and that this sex difference depends on the MPT regulator cyclophilin D (CypD). We also demonstrate that an estrogen receptor beta (ERß) antagonist inhibits MPT and knockout of ERß decreases the sensitivity of mitochondria to the CypD inhibitor, cyclosporine A. These results suggest a functional relationship between ERß and CypD in modulating brain MPT. Moreover, co-immunoprecipitation studies identify several ERß binding partners in mitochondria. Among these, we investigate the mitochondrial ATPase as a putative site of MPT regulation by ERß. We find that previously described interaction between the oligomycin sensitivity-conferring subunit of ATPase (OSCP) and CypD is decreased by ERß knockout, suggesting that ERß modulates MPT by regulating CypD interaction with OSCP. Functionally, in primary neurons and hippocampal slice cultures, modulation of ERß has protective effects against glutamate toxicity and oxygen glucose deprivation, respectively. Taken together, these results reveal a novel pathway of brain MPT regulation by ERß that could contribute to sex differences in ischemic brain injury and neurodegeneration.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Ciclofilinas/genética , Receptor beta de Estrógeno/genética , Hipocampo/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Prosencéfalo/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Células COS , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Peptidil-Prolil Isomerasa F , Ciclofilinas/antagonistas & inhibidores , Ciclofilinas/deficiencia , Ciclosporina/farmacología , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/deficiencia , Femenino , Hipocampo/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtomía , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales , Piperidinas/farmacología , Prosencéfalo/efectos de los fármacos , Unión Proteica , Pirazoles/farmacología , Factores Sexuales , Técnicas de Cultivo de Tejidos
7.
J Neurochem ; 146(3): 235-250, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29808474

RESUMEN

Prohibitin (PHB) is a ubiquitously expressed and evolutionarily conserved mitochondrial protein with multiple functions. We have recently shown that PHB up-regulation offers robust protection against neuronal injury in models of cerebral ischemia in vitro and in vivo, but the mechanism by which PHB affords neuroprotection remains to be elucidated. Here, we manipulated PHB expression in PC12 neural cells to investigate its impact on mitochondrial function and the mechanisms whereby it protects cells exposed to oxidative stress. PHB over-expression promoted cell survival, whereas PHB down-regulation diminished cell viability. Functionally, manipulation of PHB levels did not affect basal mitochondrial respiration, but it increased spare respiratory capacity. Moreover, PHB over-expression preserved mitochondrial respiratory function of cells exposed to oxidative stress. Preserved respiratory capacity in differentiated PHB over-expressing cells exposed to oxidative stress was associated with an elongated mitochondrial morphology, whereas PHB down-regulation enhanced fragmentation. Mitochondrial complex I oxidative degradation was attenuated by PHB over-expression and increased in PHB knockdown cells. Changes in complex I degradation were associated with alterations of respiratory chain supercomplexes. Furthermore, we showed that PHB directly interacts with cardiolipin and that down-regulation of PHB results in loss of cardiolipin in mitochondria, which may contribute to destabilizing respiratory chain supercomplexes. Taken together, these data demonstrate that PHB modulates mitochondrial integrity and bioenergetics under oxidative stress, and suggest that the protective effect of PHB is mediated by stabilization of the mitochondrial respiratory machinery and its functional capacity, by the regulation of cardiolipin content. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Asunto(s)
Mitocondrias/metabolismo , Neuronas/ultraestructura , Estrés Oxidativo/fisiología , Células PC12/ultraestructura , Proteínas Represoras/metabolismo , Animales , Cardiolipinas/metabolismo , Supervivencia Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligomicinas/farmacología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/fisiología , Prohibitinas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Represoras/genética , Factores de Tiempo , Transfección
8.
Nat Chem Biol ; 12(10): 838-44, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27547922

RESUMEN

The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.


Asunto(s)
Inhibidores de Adenilato Ciclasa/farmacología , Adenilil Ciclasas/metabolismo , Pirimidinas/farmacología , Tiofenos/farmacología , Inhibidores de Adenilato Ciclasa/química , Adenilil Ciclasas/química , Regulación Alostérica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Pirimidinas/química , Solubilidad , Relación Estructura-Actividad , Tiofenos/química
9.
Pediatr Res ; 83(2): 491-497, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29211056

RESUMEN

BackgroundReverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate.MethodsNeonatal mice were subjected to Rice-Vannucci model of hypoxic-ischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H2O2 generation rate in the ischemic brain.ResultsWhile brain mitochondria from control mice exhibited a rotenone-sensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H2O2 emission rate in HI-mice compared to controls. At 60 min of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls.ConclusionThese data are the first ex vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion.


Asunto(s)
Ciclo del Ácido Cítrico , Hipoxia-Isquemia Encefálica/patología , Oxígeno/metabolismo , Ácido Succínico/metabolismo , Animales , Animales Recién Nacidos , Cromatografía Líquida de Alta Presión , Electrones , Peróxido de Hidrógeno/metabolismo , Hipoxia , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , NAD/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo
10.
J Neurosci ; 36(23): 6332-51, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277809

RESUMEN

UNLABELLED: A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. SIGNIFICANCE STATEMENT: Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects.


Asunto(s)
Fumaratos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Antígenos CD/metabolismo , Línea Celular Transformada , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fumaratos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Maleatos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Trastornos Parkinsonianos/prevención & control , Ratas , Tirosina/análogos & derivados , Tirosina/farmacología
11.
J Neurosci Res ; 95(11): 2244-2252, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631845

RESUMEN

Succinylation of proteins is widespread, modifies both the charge and size of the molecules, and can alter their function. For example, liver mitochondrial proteins have 1,190 unique succinylation sites representing multiple metabolic pathways. Succinylation is sensitive to both increases and decreases of the NAD+ -dependent desuccinylase, SIRT5. Although the succinyl group for succinylation is derived from metabolism, the effects of systematic variation of metabolism on mitochondrial succinylation are not known. Changes in succinylation of mitochondrial proteins following variations in metabolism were compared against the mitochondrial redox state as estimated by the mitochondrial NAD+ /NADH ratio using fluorescent probes. The ratio was decreased by reduced glycolysis and/or glutathione depletion (iodoacetic acid; 2-deoxyglucose), depressed tricarboxylic acid cycle activity (carboxyethyl ester of succinyl phosphonate), and impairment of electron transport (antimycin) or ATP synthase (oligomycin), while uncouplers of oxidative phosphorylation (carbonyl cyanide m-chlorophenyl hydrazine or tyrphostin) increased the NAD+ /NADH ratio. All of the conditions decreased succinylation. In contrast, reducing the oxygen from 20% to 2.4% increased succinylation. The results demonstrate that succinylation varies with metabolic states, is not correlated to the mitochondrial NAD+ /NADH ratio, and may help coordinate the response to metabolic challenge.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ácido Succínico/metabolismo , Animales , Línea Celular Tumoral , Desoxiglucosa/farmacología , Ratones , NAD/metabolismo , Organofosfonatos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Succinatos/metabolismo
12.
J Bioenerg Biomembr ; 49(1): 3-11, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26971498

RESUMEN

We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.


Asunto(s)
Cationes Bivalentes/farmacología , Ácido Cítrico/farmacología , Ácido Edético/farmacología , Cloruro de Magnesio/farmacología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Transporte Biológico , Encéfalo/ultraestructura , Humanos , Peróxido de Hidrógeno/metabolismo , Canales Iónicos/metabolismo , Melanoma/patología , Melanoma/ultraestructura , Ratones , Ratas , Especies Reactivas de Oxígeno/metabolismo
13.
Pestic Biochem Physiol ; 135: 41-46, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28043329

RESUMEN

Insects pollinate 75% of crops used for human consumption. Over the last decade, a substantial reduction in the abundance of pollinating insects has been recorded and recognized as a severe matter for food supply security. Many of the important food crops destined for human consumption are grown in greenhouses. A unique feature of greenhouse agriculture is the extensive use of fungicides to curb multiple fungal infections. The most widely used pollinating insects in greenhouses are commercially reared bumblebees. However, there is no data regarding the toxicity of fungicides to bumblebee mitochondria. To fill this gap in knowledge, we examined the effects of 16 widely used fungicides on the energetics of the flight muscles mitochondria of Bombus terrestris. We found that diniconazole and fludioxonil uncoupled the respiration of mitochondria; dithianon and difenoconazole inhibited it. By analyzing the action of these inhibitors on mitochondrial respiration and generation of reactive oxygen species, we concluded that difenoconazole inhibited electron transport at the level of Complex I and glycerol-3-phosphate dehydrogenase. Dithianon strongly inhibited succinate dehydrogenase and glycerol-3-phosphate dehydrogenase. It also strongly inhibited mitochondrial oxidation of NAD-linked substrates or glycerol 3-phosphate, but it had no effect on the enzymatic activity of Complex I. It may be suggested that dithianon inhibits electron transport downstream of Complex I, likely at multiply sites.


Asunto(s)
Abejas , Fungicidas Industriales/toxicidad , Mitocondrias Musculares/efectos de los fármacos , Animales , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Glicerolfosfato Deshidrogenasa/metabolismo , Glicerofosfatos/metabolismo , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Musculares/metabolismo , NADH Deshidrogenasa/antagonistas & inhibidores , NADH Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo
14.
Hum Mol Genet ; 23(14): 3716-32, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556215

RESUMEN

Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology.


Asunto(s)
Azul de Metileno/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Tauopatías/tratamiento farmacológico , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Línea Celular , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Azul de Metileno/administración & dosificación , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Factores Sexuales , Transducción de Señal/efectos de los fármacos , Tauopatías/patología
15.
FASEB J ; 28(4): 1682-97, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24391134

RESUMEN

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ciclo del Ácido Cítrico , Dihidrolipoamida Deshidrogenasa/metabolismo , Mitocondrias Hepáticas/metabolismo , NAD/metabolismo , Acilcoenzima A/metabolismo , Animales , Columbidae , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipoxia/metabolismo , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/fisiología , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Biológicos , Nitrilos/farmacología , Oxidación-Reducción , Fosforilación Oxidativa , Especificidad por Sustrato , Succinato-CoA Ligasas/metabolismo , Desacopladores/farmacología
16.
FASEB J ; 28(4): 1745-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24398293

RESUMEN

The peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) interacts with various transcription factors involved in energy metabolism and in the regulation of mitochondrial biogenesis. PGC-1α mRNA levels are reduced in a number of neurodegenerative diseases and contribute to disease pathogenesis, since increased levels ameliorate behavioral defects and neuropathology of Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PGC-1α and its downstream targets are reduced both in postmortem brain tissue of patients with Alzheimer's disease (AD) and in transgenic mouse models of AD. Therefore, we investigated whether increased expression of PGC-1α would exert beneficial effects in the Tg19959 transgenic mouse model of AD; Tg19959 mice express the human amyloid precursor gene (APP) with 2 familial AD mutations and develop increased ß-amyloid levels, plaque deposition, and memory deficits by 2-3 mo of age. Rather than an improvement, the cross of the Tg19959 mice with mice overexpressing human PGC-1α exacerbated amyloid and tau accumulation. This was accompanied by an impairment of proteasome activity. PGC-1α overexpression induced mitochondrial abnormalities, neuronal cell death, and an exacerbation of behavioral hyperactivity in the Tg19959 mice. These findings show that PGC-1α overexpression exacerbates the neuropathological and behavioral deficits that occur in transgenic mice with mutations in APP that are associated with human AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Factores de Transcripción/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Western Blotting , Muerte Celular/genética , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Mutación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Placa Amiloide/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
17.
Hum Mol Genet ; 21(23): 5091-105, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22922230

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-mediated transcription factors, which control both lipid and energy metabolism and inflammation pathways. PPARγ agonists are effective in the treatment of metabolic diseases and, more recently, neurodegenerative diseases, in which they show promising neuroprotective effects. We studied the effects of the pan-PPAR agonist bezafibrate on tau pathology, inflammation, lipid metabolism and behavior in transgenic mice with the P301S human tau mutation, which causes familial frontotemporal lobar degeneration. Bezafibrate treatment significantly decreased tau hyperphosphorylation using AT8 staining and the number of MC1-positive neurons. Bezafibrate treatment also diminished microglial activation and expression of both inducible nitric oxide synthase and cyclooxygenase 2. Additionally, the drug differentially affected the brain and brown fat lipidome of control and P301S mice, preventing lipid vacuoles in brown fat. These effects were associated with behavioral improvement, as evidenced by reduced hyperactivity and disinhibition in the P301S mice. Bezafibrate therefore exerts neuroprotective effects in a mouse model of tauopathy, as shown by decreased tau pathology and behavioral improvement. Since bezafibrate was given to the mice before tau pathology had developed, our data suggest that bezafibrate exerts a preventive effect on both tau pathology and its behavioral consequences. Bezafibrate is therefore a promising agent for the treatment of neurodegenerative diseases associated with tau pathology.


Asunto(s)
Conducta Animal/efectos de los fármacos , Bezafibrato/farmacología , Tauopatías/metabolismo , Proteínas tau/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Bezafibrato/administración & dosificación , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Transgénicos , Oxidación-Reducción , Estrés Oxidativo , Fosforilación/efectos de los fármacos , Tauopatías/tratamiento farmacológico
18.
J Bioenerg Biomembr ; 46(6): 471-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25248416

RESUMEN

Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 µM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50-70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200-2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction.


Asunto(s)
Encéfalo/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Animales , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno
19.
FASEB J ; 27(6): 2392-406, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23475850

RESUMEN

A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.


Asunto(s)
Aciltransferasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Dihidrolipoamida Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Femenino , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA