Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Int J Toxicol ; 43(3): 243-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38183303

RESUMEN

This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-ß-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 µg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 µM) > pinocembrin (144 µM) > quercetin (222 µM) > titanium dioxide (704 µM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.


Asunto(s)
Supervivencia Celular , Fibroblastos , Extractos Vegetales , Protectores Solares , Humanos , Protectores Solares/toxicidad , Protectores Solares/química , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Fibroblastos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Salvia/química , Daño del ADN/efectos de los fármacos , Células Cultivadas , Lippia/química , Cromatografía de Gases y Espectrometría de Masas
2.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985843

RESUMEN

The study aimed to determine the enhanced effects of essential oils (EOs) and plant-derived molecules (PDMs) as penetration enhancers (PEs) for transdermal drug delivery (TDD) of caffeine. A 1% w/w solution of eight EOs and seven PDMs was included in the 1% caffeine carbopol hydrogel. Franz diffusion cell experiments were performed using mice with full-thickness skin. At various times over 24 h, 300 µL of the receptor were withdrawn and replaced with fresh medium. Caffeine was analyzed spectrophotometrically at 272 nm. The skin irritation effects of the hydrogels applied once a day for 21 days were investigated in mice. The steady-state flux (JSS) of the caffeine hydrogel was 30 ± 19.6 µg cm-2 h-1. An increase in caffeine JSS was induced by Lippia origanoides > Turnera diffusa > eugenol > carvacrol > limonene, with values of 150 ± 14.1, 130 ± 47.6, 101 ± 21.7, 90 ± 18.4, and 86 ± 21.0 µg cm-2 h-1, respectively. The Kp of caffeine was 2.8 ± 0.26 cm h-1, almost 2-4 times lower than that induced by Lippia origanoides > Turnera diffusa > limonene > eugenol > carvacrol, with Kp values of 11 ± 1.7, 8.8 ± 4.2, 6.8 ± 1.7, 6.3 ± 1.2, and 5.15 ± 1.0 cm h-1, respectively. No irritating effects were observed. Lippia origanoides, Turnera diffusa, eugenol, carvacrol, and limonene improved caffeine's skin permeation. These compounds may be as effective as the PE in TDD systems.


Asunto(s)
Aceites Volátiles , Ratones , Animales , Aceites Volátiles/farmacología , Limoneno , Eugenol , Colombia , Cafeína , Administración Cutánea , Hidrogeles
3.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838766

RESUMEN

Hibiscus rosa-sinensis plants are mainly cultivated as ornamental plants, but they also have food and medicinal uses. In this work, 16 H. rosa-sinensis cultivars were studied to measure their colorimetric parameters and the chemical composition of hydroethanolic extracts obtained from their petals. These extracts were characterized using UHPLC-ESI+-Obitrap-MS, and their antioxidant activity was evaluated using the ORAC assay. The identified flavonoids included anthocyanins derived from cyanidin, glycosylated flavonols derived from quercetin and kaempferol, and flavan-3-ols such as catechin and epicatechin. Cyanidin-sophoroside was the anthocyanin present in extracts of lilac, pink, orange, and red flowers, but was not detected in extracts of white or yellow flowers. The total flavonol concentration in the flower extracts was inversely proportional to the total anthocyanin content. The flavonol concentration varied according to the cultivar in the following order: red < pink < orange < yellow ≈ white, with the extract from the red flower presenting the lowest flavonol concentration and the highest anthocyanin concentration. The antioxidant activity increased in proportion to the anthocyanin concentration, from 1580 µmol Trolox®/g sample (white cultivar) to 3840 µmol Trolox®/g sample (red cultivar).


Asunto(s)
Catequina , Hibiscus , Rosa , Flavonoides/análisis , Antocianinas/química , Antioxidantes/análisis , Hibiscus/química , Flavonoles/química , Catequina/análisis , Flores/química , Color
4.
Molecules ; 28(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241897

RESUMEN

The large-scale use of alcohol (OH)-based disinfectants to control pathogenic viruses is of great concern because of their side effects on humans and harmful impact on the environment. There is an urgent need to develop safe and environmentally friendly disinfectants. Essential oils (EOs) are generally recognized as safe (GRAS) by the FDA, and many exhibit strong antiviral efficacy against pathogenic human enveloped viruses. The present study investigated the virucidal disinfectant activity of solutions containing EO and OH against DENV-2 and CHIKV, which were used as surrogate viruses for human pathogenic enveloped viruses. The quantitative suspension test was used. A solution containing 12% EO + 10% OH reduced > 4.0 log10 TCID50 (100% reduction) of both viruses within 1 min of exposure. In addition, solutions containing 12% EO and 3% EO without OH reduced > 4.0 log10 TCID50 of both viruses after 10 min and 30 min of exposure, respectively. The binding affinities of 42 EO compounds and viral envelope proteins were investigated through docking analyses. Sesquiterpene showed the highest binding affinities (from -6.7 to -8.0 kcal/mol) with DENV-2 E and CHIKV E1-E2-E3 proteins. The data provide a first step toward defining the potential of EOs as disinfectants.


Asunto(s)
Desinfectantes , Aceites Volátiles , Virus , Humanos , Aceites Volátiles/farmacología , Desinfectantes/farmacología , Desinfectantes/química , Antivirales/farmacología , Etanol
5.
Molecules ; 28(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241803

RESUMEN

Salvia aratocensis (Lamiaceae) is an endemic shrub from the Chicamocha River Canyon in Santander (Colombia). Its essential oil (EO) was distilled from the aerial parts of the plant via steam distillation and microwave-assisted hydrodistillation and analyzed using GC/MS and GC/FID. Hydroethanolic extracts were isolated from dry plants before distillation and from the residual plant material after distillation. The extracts were characterized via UHPLC-ESI(+/-)-Orbitrap-HRMS. The S. aratocensis essential oil was rich in oxygenated sesquiterpenes (60-69%) and presented τ-cadinol (44-48%) and 1,10-di-epi-cubenol (21-24%) as its major components. The in vitro antioxidant activity of the EOs, measured via an ABTS+• assay, was 32-49 µmol Trolox® g-1 and that measured using the ORAC assay was 1520-1610 µmol Trolox® g-1. Ursolic acid (28.9-39.8 mg g-1) and luteolin-7-O-glucuronide (1.16-25.3 mg g-1) were the major S. aratocensis extract constituents. The antioxidant activity of the S. aratocensis extract, obtained from undistilled plant material, was higher (82 ± 4 µmol Trolox® g-1, ABTS+•; 1300 ± 14 µmol Trolox® g-1, ORAC) than that of the extracts obtained from the residual plant material (51-73 µmol Trolox® g-1, ABTS+•; 752-1205 µmol Trolox® g-1, ORAC). S. aratocensis EO and extract had higher ORAC antioxidant capacity than the reference substances butyl hydroxy toluene (98 µmol Trolox® g-1) and α-tocopherol (450 µmol Trolox® g-1). S. aratocensis EOs and extracts have the potential to be used as natural antioxidants for cosmetics and pharmaceutical products.


Asunto(s)
Aceites Volátiles , Salvia , Antioxidantes/farmacología , Antioxidantes/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Salvia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
6.
Molecules ; 28(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110708

RESUMEN

Plants of the genus Scutellaria (Lamiaceae) have a wide variety of bioactive secondary metabolites with diverse biological properties, e.g., anti-inflammatory, antiallergenic, antioxidant, antiviral, and antitumor activities. The chemical composition of the hydroethanolic extracts, obtained from dried plants of S. incarnata, S. coccinea, and S. ventenatii × S. incarnata, was determined by UHPLC/ESI-Q-Orbitrap-MS. The flavones were found in a higher proportion. Baicalin and dihydrobaicalein-glucuronide were the major extract components in S. incarnata (287.127 ± 0.005 mg/g and 140.18 ± 0.07 mg/g), in S. coccinea (158.3 ± 0.34 mg/g and 51.20 ± 0.02 mg/g), and in S. ventenatii × S. incarnata (186.87 ± 0.01 mg/g and 44.89 ± 0.06 mg/g). The S. coccinea extract showed the highest antioxidant activity in the four complementary techniques employed to evaluate all extracts: ORAC (3828 ± 3.0 µmol Trolox®/g extract), ABTS+• (747 ± 1.8 µmol Trolox®/g extract), online HPLC-ABTS+• (910 ± 1.3 µmol Trolox®/g extract), and ß-carotene (74.3 ± 0.8 µmol Trolox®/g extract).


Asunto(s)
Antioxidantes , Scutellaria , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Colombia , Fenoles/química
7.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687142

RESUMEN

The insertion of circular economy principles into the essential oil (EO) production chain aims to reduce waste generation and make integral use of harvested plant material. Higher profits from integral use with reduced waste generation contribute to the eventual use of the EO value chain as an alternative to illicit crops in Colombia (mostly coca). In this study, Java-type citronella (Cymbopogon winterianus) and palmarosa (C. martinii) plant materials were used in two consecutive processes to obtain EOs and extracts. The residual biomass after EO distillation was subjected to ultrasound-assisted hydroethanolic extraction to afford extracts that contained bioactive compounds. Citronella and palmarosa were distilled with typical EO yields (1.0 ± 0.1% for citronella; 0.41 ± 0.06% for palmarosa; n = 5) either through hydrodistillation assisted by microwave radiation or through steam distillation, and their composition (determined via GC/FID/MS analysis) and physicochemical parameters fell within their ISO standard specifications. The concentration of citronellal, the major compound of citronella oil, was 500 ± 152 mg/g. Geraniol, the main component of palmarosa oil, was found at 900 ± 55 mg/g. The citronella and palmarosa hydroalcoholic extracts (4-11% yield) were analyzed with UHPLC-ESI-Orbitrap-MS, which permitted the identification of 30 compounds, mainly C-glycosylated flavones and hydroxycinnamic acids. Both extracts had similar antioxidant activity values, evaluated using the ABTS+● and ORAC assays (110 ± 44 µmol Trolox®/g extract and 1300 ± 141 µmol Trolox®/g extract, respectively).


Asunto(s)
Cymbopogon , Colombia , Biomasa , Cromatografía de Gases , Extractos Vegetales
8.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836610

RESUMEN

Hyptis colombiana (Lamiaceae family), a species also treated as Cantinoa colombiana in a recently segregated genus from Hyptis, is a perennial herb or subshrub native to the Andes of northern South America. H. colombiana leaves are commonly used in traditional medicine to treat respiratory and digestive illnesses. In this study, H. colombiana plants at different phenological stages (vegetative, flowering, and post-flowering) were harvested to obtain essential oils (EOs) and extracts (from fresh plant materials or post-distillation waste) whose chemical compositions and antioxidant activities were determined. H. colombiana EOs distilled by microwave-assisted hydrodistillation were analyzed by GC/MS/FID, and hydroalcoholic extracts obtained from fresh plant materials or post-distillation waste were analyzed by UHPLC-ESI+/--Orbitrap-MS. The antioxidant activity was evaluated by the ABTS+• and ORAC assays. The principal compounds found in EOs were sesquiterpene hydrocarbons (65%); specifically, (E)-ß-caryophyllene and germacrene D. Pyranone, rosmarinic acid, rutin, and p-hydroxybenzoic acid were the main constituents in H. colombiana extracts. After analyzing the chemical composition and antioxidant activity (ORAC) of EOs and hydroethanolic extracts from flowering H. colombiana plants, minimal variations were found. It is advisable to harvest H. colombiana plants during their flowering stage to acquire EOs and extracts that can be utilized in the agro-industry of EOs and their natural derivatives.


Asunto(s)
Hyptis , Aceites Volátiles , Antioxidantes/farmacología , Antioxidantes/química , Hyptis/química , Aceites Volátiles/química , Hojas de la Planta , Extractos Vegetales/química
9.
Curr Issues Mol Biol ; 44(11): 5741-5755, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421673

RESUMEN

Obesity is characterized by an expansion of adipose tissue due to excessive accumulation of triglycerides in adipocytes, causing hypertrophy and hyperplasia, followed by hypoxia, alterations in adipocyte functionality, and chronic inflammation. However, current treatments require changes in lifestyle that are difficult to achieve and some treatments do not generate sustained weight loss over time. Therefore, we evaluated the effect of the essential oil (EO) of Lippia alba (Verbenaceae) carvone chemotype on viability, lipid mobilization, and adipogenesis of adipocytes in two normal and pathological cellular models in vitro. In 3T3-L1 adipocytes, a normal and a pathological model of obesity were induced, and then the cells were treated with L. alba carvone chemotype EO to evaluate cell viability, lipid mobilization, and adipogenesis. L. alba carvone chemotype EO does not decrease adipocyte viability at concentrations of 0.1, 1, and 5 µg/mL; furthermore, there was evidence of changes in lipid mobilization and adipogenesis, leading to a reversal of adipocyte hypertrophy. These results could be due to effects produced by EO on lipogenic and lipolytic pathways, as well as modifications in the expression of adipogenesis genes. L. alba carvone chemotype EO could be considered as a possible treatment for obesity, using the adipocyte as a therapeutic target.

10.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296428

RESUMEN

Multi-drug resistant species such as Candida auris are a global health threat. This scenario has highlighted the need to search for antifungal alternatives. Essential oils (EOs), or some of their major compounds, could be a source of new antifungal molecules. The aim of this study was to evaluate the in vitro activity of EOs and some terpenes against C. auris and other Candida spp. The eleven EOs evaluated were obtained by hydro-distillation from different Colombian plants and the terpenes were purchased. EO chemical compositions were obtained by gas chromatography/mass spectrometry (GC/MS). Antifungal activity was evaluated following the CLSI standard M27, 4th Edition. Cytotoxicity was tested on the HaCaT cell line and fungal growth kinetics were tested by time-kill assays. Candida spp. showed different susceptibility to antifungals and the activity of EOs and terpenes was strain-dependent. The Lippia origanoides (thymol + p-cymene) chemotype EO, thymol, carvacrol, and limonene were the most active, mainly against drug-resistant strains. The most active EOs and terpenes were also slightly cytotoxic on the HaCaT cells. The findings of this study suggest that some EOs and commercial terpenes can be a source for the development of new anti-Candida products and aid the identification of new antifungal targets or action mechanisms.


Asunto(s)
Candida , Aceites Volátiles , Antifúngicos/farmacología , Antifúngicos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Timol , Limoneno , Colombia , Terpenos/química , Pruebas de Sensibilidad Microbiana
11.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296437

RESUMEN

Currently, there are no therapies to prevent severe dengue disease. Essential oils (EOs) can serve as primary sources for research and the discovery of phytomedicines for alternative therapy. Fourteen EOs samples were obtained by distillation from six plants used in Colombian folk medicine. GC/MS analysis identified 125 terpenes. Cytopathic effect (CPE) reduction assays revealed differences in antiviral activity. EOs of Lippia alba, citral chemotype and carvone-rich fraction; Lippia origanoides, phellandrene chemotype; and Turnera diffusa, exhibited strong antiviral activity (IC50: 29 to 82 µg/mL; SI: 5.5 to 14.3). EOs of Piper aduncum, Ocimum basilicum, and L. origanoides, carvacrol, and thymol chemotypes, exhibited weak antiviral activity (32 to 53% DENV-CPE reduction at 100 µg/mL; SI > 5.0). Cluster and one-way ANOVA analyses suggest that the strong antiviral activity of EOs could be attributed to increased amounts of non-phenolic oxygenated monoterpenes and sesquiterpene hydrocarbons. Docking analyses (AutoDock Vina) predicted binding affinity between the DENV-2 E protein and terpenes: twenty sesquiterpene hydrocarbons (−8.73 to −6.91 kcal/mol), eight oxygenated monoterpenes (−7.52 to −6.98 kcal/mol), and seven monoterpene hydrocarbons (−7.60 to −6.99 kcal/mol). This study reports for the first time differences in the antiviral activity of EOs against DENV, corresponding to their composition of monoterpenes and sesquiterpenes.


Asunto(s)
Virus del Dengue , Lippia , Aceites Volátiles , Sesquiterpenos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Timol , Antivirales/farmacología , Colombia , Lippia/química , Monoterpenos/farmacología , Monoterpenos/química , Terpenos/química , Aceites de Plantas/química
12.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807442

RESUMEN

In this work, the antioxidant activity of the hydro-ethanolic extracts of the leaves, flowers, and aerial parts of Steiractinia aspera Cuatrec, both fresh and post-distillation, was evaluated by ABTS+·, FRAP, H2O2 and DPPH assays. The cytotoxic activity was evaluated in MCF-7, MCF-10A and HT-29 cell lines. The hydro-ethanolic extracts were obtained by matrix solid-phase dispersion (MSPD) and ultrasound-assisted solvent extraction (SE). The fresh-leaf MSPD extract had the highest antioxidant activity, and the post-distillation leaf ultrasound-assisted SE extract had the highest cytotoxicity in the MCF-7 breast cancer cell line, although not selective, which was evaluated by sulforhodamine B assay. On the other hand, ROS was evaluated by flow cytometry which showed that post-distillation leaf extract is pro-oxidant. Chlorogenic acid, kaempferol-3-glucoside and quercetin were found in the fresh leaves' extracts, according to HPLC-DAD. PLC-DAD permitted the isolation of p-coumaric acid, E-3-(4-(((E)-3-(3,4-dihydroxyphenyl) acryloyl) oxy)-3-hydroxyphenyl) acrylic acid and a diglucosylated derivative of ursolic acid, which were analyzed by 1H and 13C NMR. Our results suggest that the fresh leaf extract of Steiractinia aspera Cuatrec has potential use for antioxidant applications.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/química , Antioxidantes/farmacología , Etanol , Peróxido de Hidrógeno , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta , Quercetina
13.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080288

RESUMEN

Plants are sources of sunscreen ingredients that prevent cellular mutations involved in skin cancer and aging. This study investigated the sunscreen properties of the extracts from some ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined. Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also obtained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were identified by UHPLC-ESI+-Orbitrap-MS. The studied extracts showed high photoprotection efficacy and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic. The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone 20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia; quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen ingredients was discussed.


Asunto(s)
Quempferoles , Protectores Solares , Flores , Glucósidos , Humanos , Extractos Vegetales/farmacología , Plantas , Quercetina , Protectores Solares/farmacología , Rayos Ultravioleta
14.
Molecules ; 26(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34834034

RESUMEN

Plants are known to increase the emission of volatile organic compounds upon the damage of phytophagous insects. However, very little is known about the composition and temporal dynamics of volatiles released by wild plants of the genus Crotalaria (Fabaceae) attacked with the specialist lepidopteran caterpillar Utetheisa ornatrix (Linnaeus) (Erebidae). In this work, the herbivore-induced plant volatiles (HIPV) emitted by Crotalaria nitens Kunth plants were isolated with solid phase micro-extraction and the conventional purge and trap technique, and their identification was carried out by GC/MS. The poly-dimethylsiloxane/divinylbenzene fiber showed higher affinity for the extraction of apolar compounds (e.g., trans-ß-caryophyllene) compared to the Porapak™-Q adsorbent from the purge & trap method that extracted more polar compounds (e.g., trans-nerolidol and indole). The compounds emitted by C. nitens were mainly green leaf volatile substances, terpenoids, aromatics, and aldoximes (isobutyraldoxime and 2-methylbutyraldoxime), whose maximum emission was six hours after the attack. The attack by caterpillars significantly increased the volatile compounds emission in the C. nitens leaves compared to those subjected to mechanical damage. This result indicated that the U. ornatrix caterpillar is responsible for generating a specific response in C. nitens plants. It was demonstrated that HIPVs repelled conspecific moths from attacked plants and favored oviposition in those without damage. The results showed the importance of volatiles in plant-insect interactions, as well as the choice of appropriate extraction and analytical methods for their study.


Asunto(s)
Crotalaria/metabolismo , Repelentes de Insectos/metabolismo , Mariposas Nocturnas , Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Crotalaria/parasitología , Repelentes de Insectos/análisis , Larva , Hojas de la Planta/parasitología , Compuestos Orgánicos Volátiles/análisis
15.
J Sep Sci ; 43(23): 4322-4337, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32991052

RESUMEN

Hepatotoxic and genotoxic pyrrolizidine alkaloids have been involved in the acute poisoning of animals and humans. Crotalaria (Fabaceae) species contain these alkaloids. In this work, the diversity and distribution of pyrrolizidine alkaloids in roots, leaves, flowers, and seeds of Crotalaria pallida, Crotalaria maypurensis, Crotalaria retusa, Crotalaria spectabilis, Crotalaria incana, and Crotalaria nitens were studied. Matrix solid-phase dispersion and ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry were successfully employed in pyrrolizidine alkaloids extraction and analysis, respectively. Forty-five pyrrolizidine alkaloids were detected and their identification was based on the mass spectrometry accurate mass measurement and fragmentation pattern analysis. The cyclic retronecine-type diesters monocrotaline, crotaleschenine, integerrimine, usaramine, and their N-oxides were predominantly present. Five novel alkaloids were identified for the first time in Crotalaria species, namely 14-hydroxymonocrotaline, 12-acetylcrotaleschenine, 12-acetylmonocrotaline, 12-acetylintegerrimine, and dihydrointegerrimine. Due to a lack of commercially available standards, the response factor of monocrotaline was used for quantification of pyrrolizidine alkaloids and their N-oxides. Seeds and flowers possessed higher pyrrolizidine alkaloids amounts than roots and leaves. Due to their 1,2-unsaturated pyrrolizidine alkaloids content, the ingestion of Crotalaria plant seeds or other parts through herbal products, infusions, or natural remedies is a serious health threat to humans and livestock.


Asunto(s)
Crotalaria/química , Alcaloides de Pirrolicidina/análisis , Cromatografía Líquida de Alta Presión , Flores/química , Espectrometría de Masas , Estructura Molecular , Hojas de la Planta/química , Raíces de Plantas/química , Semillas/química
16.
Molecules ; 25(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971920

RESUMEN

Aromas and flavours can be produced from fungi by either de novo synthesis or biotransformation processes. Herein, the biocatalytic potential of seven basidiomycete species from Colombia fungal strains isolated as endophytes or basidioma was evaluated. Ganoderma webenarium, Ganoderma chocoense, and Ganoderma stipitatum were the most potent strains capable of decolourizing ß,ß-carotene as evidence of their potential as biocatalysts for de novo aroma synthesis. Since a species' biocatalytic potential cannot solely be determined via qualitative screening using ß,ß-carotene biotransformation processes, we focused on using α-pinene biotransformation with mycelium as a measure of catalytic potential. Here, two strains of Trametes elegans-namely, the endophytic (ET-06) and basidioma (EBB-046) strains-were screened. Herein, T. elegans is reported for the first time as a novel biocatalyst for the oxidation of α-pinene, with a product yield of 2.9 mg of cis-Verbenol per gram of dry weight mycelia used. The EBB-046 strain generated flavour compounds via the biotransformation of a Cape gooseberry medium and de novo synthesis in submerged cultures. Three aroma-producing compounds were identified via GC-MS-namely, methyl-3-methoxy-4H-pyran-4-one, hexahydro-3-(methylpropyl)-pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(methylphenyl)-pyrrolo[1,2-a]pyrazine-1,4-dione.


Asunto(s)
Basidiomycota/metabolismo , Biocatálisis , Odorantes/análisis , Gusto , Animales , Biotransformación , Colombia , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
17.
J Proteome Res ; 17(10): 3370-3383, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185032

RESUMEN

Triple-negative breast cancer is an aggressive subtype of breast cancer with low 5-year survival rates, high 3-year recurrence rates, and no known therapeutic targets. Recent studies have indicated that triple-negative breast cancers possess an altered metabolic state with higher rates of glycolysis, mitochondrial oxidative phosphorylation, and increased generation and utilization of tricarboxylic acid cycle intermediates. Here, we utilized label-free quantitative proteomics to gain insight into the anticancer mechanisms of a methanolic extract from the Central American plant Lippia origanoides on MDA-MB-231 triple-negative breast cancer cells. The L. origanoides extract dysregulated mitochondrial oxidative phosphorylation by suppressing the expression of several subunits of Complex I of the electron transport chain, and inhibited cellular metabolism by down-regulating key tricarboxylic acid cycle enzymes and mitochondrial lipid and amino-acid metabolic pathways. Our study also revealed that treatment with the extract activated the stress response and pathways related to cell-cycle progression and DNA repair. Overall, our results reveal compelling new evidence that the extract from L. origanodes triggers rapid irreversible apoptosis in MDA-MB-231 cells by effectively 'starving' the cells of metabolites and ATP. We continue to study the specific bioactive components of the extract in the search for novel, highly effective mitochondrial inhibitors to selectively target triple-negative breast cancer.


Asunto(s)
Lippia/química , Mitocondrias/efectos de los fármacos , Extractos Vegetales/farmacología , Proteómica/métodos , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Femenino , Glucólisis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
18.
BMC Complement Altern Med ; 18(1): 225, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053848

RESUMEN

BACKGROUND: Chagas Disease caused by Trypanosoma cruzi infection, is one of the most important neglected tropical diseases (NTD), without an effective therapy for the successful parasite eradication or for the blocking of the disease's progression, in its advanced stages. Due to their low toxicity, wide pharmacologic spectrum, and potential synergies, medicinal plants as Lippia alba, offer a promising reserve of bioactive molecules. The principal goal of this work is to characterize the inhibitory properties and cellular effects of the Citral and Carvone L. alba chemotype essential oils (EOs) and their main bioactive terpenes (and the synergies among them) on T. cruzi forms. METHODS: Twelve L. alba EOs, produced under diverse environmental conditions, were extracted by microwave assisted hydrodistillation, and chemically characterized using gas chromatography coupled mass spectrometry. Trypanocidal activity and cytotoxicity were determined for each oil, and their major compounds, on epimastigotes (Epi), trypomastigotes (Tryp), amastigotes (Amas), and Vero cells. Pharmacologic interactions were defined by a matrix of combinations among the most trypanocidal terpenes (limonene, carvone; citral and caryophyllene oxide). The treated cell phenotype was assessed by fluorescent and optic microscopy, flow cytometry, and DNA electrophoresis assays. RESULTS: The L. alba EOs displayed significant differences in their chemical composition and trypanocidal performance (p = 0.0001). Citral chemotype oils were more trypanocidal than Carvone EOs, with Inhibitory Concentration 50 (IC50) of 14 ± 1.5 µg/mL, 22 ± 1.4 µg/mL and 74 ± 4.4 µg/mL, on Epi, Tryp and Amas, respectively. Limonene exhibited synergistic interaction with citral, caryophyllene oxide and Benznidazole (decreasing by 17 times its IC50) and was the most effective and selective treatment. The cellular analysis suggested that these oils or their bioactive terpenes (citral, caryophyllene oxide and limonene) could be inducing T. cruzi cell death by an apoptotic-like mechanism. CONCLUSIONS: EOs extracted from L. alba Citral chemotype demonstrated significant trypanocidal activity on the three forms of T. cruzi studied, and their composition and trypanocidal performance were influenced by production parameters. Citral, caryophyllene oxide, and limonene showed a possible induction of an apoptotic-like phenotype. The best selective anti-T. cruzi activity was achieved by limonene, the effects of which were also synergic with citral, caryophyllene oxide and benznidazole.


Asunto(s)
Lippia/química , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Terpenos/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Fragmentación del ADN/efectos de los fármacos , Aceites Volátiles/química , Fosfatidilserinas/metabolismo , Extractos Vegetales/química , Terpenos/química , Tripanocidas/química , Trypanosoma cruzi/citología , Células Vero
19.
Molecules ; 20(2): 1860-71, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25625681

RESUMEN

This study evaluated the influence of seasonal variation on the yield and composition of essential oil of Lippia origanoides occurring in the Middle Rio Amazonas, Brazil, and the impact on its antimicrobial potential. The average oil yield was 1.7% ± 0.2% in the rainy season and 1.6% ± 0.3% in the dry season. Some correlations with climatic parameters were observed. The major components were carvacrol (rainy, 43.5% ± 1.9%; dry, 41.4% ± 2.04%), thymol (rainy, 10.7% ± 1.1%; dry, 10.6% ± 0.9%), p-cymene (rainy, 9.8% ± 0.7%; dry, 10.0% ± 1.4%) and p-methoxythymol (rainy, 9.6% ± 0.8%; dry, 10.4% ± 1.4%). It was found that the antibacterial activity of L. origanoides against Staphylococcus aureus and Escherichia coli was little influenced by the changes in oil composition due to seasonal variation. Against S. aureus, the oil Minimum Inhibitory Concentration (MIC) value was 1.25 µL/mL over ten months. Against E. coli, the oil MIC values ranged from 0.15 µL/mL to 0.31 µL/mL in different months of the year. The Minimum Bactericidal Concentration (MBC) value was 2.5 µL/mL against S. aureus and 1.25 µL/mL against E. coli. The results suggest that the antimicrobial activity identified in the oil remain unchanged for the full year, allowing its medicinal use without any risk of loss or absence of the active principles of the plant.


Asunto(s)
Antibacterianos/farmacología , Lippia/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Cimenos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos
20.
Parasitol Res ; 113(7): 2647-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24781026

RESUMEN

Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity.


Asunto(s)
Aedes , Insecticidas/aislamiento & purificación , Aceites Volátiles/aislamiento & purificación , Animales , Citrus sinensis/química , Colombia , Cymbopogon/química , Cromatografía de Gases y Espectrometría de Masas , Concentración 50 Inhibidora , Larva , Lippia/química , Rutaceae/química , Tagetes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA