Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Med ; 18(3): 221-30, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26334177

RESUMEN

PURPOSE: To assess the potential of whole-genome sequencing (WGS) to replicate and augment results from conventional blood-based newborn screening (NBS). METHODS: Research-generated WGS data from an ancestrally diverse cohort of 1,696 infants and both parents of each infant were analyzed for variants in 163 genes involved in disorders included or under discussion for inclusion in US NBS programs. WGS results were compared with results from state NBS and related follow-up testing. RESULTS: NBS genes are generally well covered by WGS. There is a median of one (range: 0-6) database-annotated pathogenic variant in the NBS genes per infant. Results of WGS and NBS in detecting 28 state-screened disorders and four hemoglobin traits were concordant for 88.6% of true positives (n = 35) and 98.9% of true negatives (n = 45,757). Of the five infants affected with a state-screened disorder, WGS identified two whereas NBS detected four. WGS yielded fewer false positives than NBS (0.037 vs. 0.17%) but more results of uncertain significance (0.90 vs. 0.013%). CONCLUSION: WGS may help rule in and rule out NBS disorders, pinpoint molecular diagnoses, and detect conditions not amenable to current NBS assays.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma Humano , Tamizaje Neonatal/métodos , Análisis de Secuencia de ADN/métodos , Estudios de Cohortes , Femenino , Variación Genética , Humanos , Recién Nacido , Masculino , Sensibilidad y Especificidad
2.
Hum Mol Genet ; 20(12): 2366-78, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21459774

RESUMEN

Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to identify a human autosomal locus that controls this replication timing program in cis. We show that Cre/loxP-mediated rearrangements at a discrete locus at 6q16.1 result in delayed replication of the entire chromosome. This locus displays asynchronous replication timing that is coordinated with other mono-allelically expressed genes on chromosome 6. Characterization of this locus revealed mono-allelic expression of a large intergenic non-coding RNA, which we have named asynchronous replication and autosomal RNA on chromosome 6, ASAR6. Finally, disruption of this locus results in the activation of the previously silent alleles of linked mono-allelically expressed genes. We previously found that chromosome rearrangements involving eight different autosomes display delayed replication timing, and that cells containing chromosomes with delayed replication timing have a 30-80-fold increase in the rate at which new gross chromosomal rearrangements occurred. Taken together, these observations indicate that human autosomes contain discrete cis-acting loci that control chromosome-wide replication timing, mono-allelic expression and the stability of entire chromosomes.


Asunto(s)
Inestabilidad Cromosómica/genética , Cromosomas Humanos Par 6/genética , Replicación del ADN/fisiología , Regulación de la Expresión Génica/genética , Sitios Genéticos/genética , Secuencia de Bases , Bromodesoxiuridina , Línea Celular , Replicación del ADN/genética , ADN Intergénico/genética , Fucosiltransferasas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Proteínas con Dominio LIM , Datos de Secuencia Molecular , ARN no Traducido/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores de Tiempo , Factores de Transcripción/metabolismo
3.
Hum Gene Ther ; 15(12): 1287-92, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15684704

RESUMEN

Specific gene ablation by RNA inference (RNAi) involves the binding of short interfering RNA (siRNA), 21 to 22 nucleotides long, to complementary mRNA sequences, leading to sequence-specific posttranslational gene silencing, thus providing a powerful tool for studying gene function with potential therapeutic applications. Here we describe the development of a two-vector adenovirus system for efficient, tightly controlled hairpin siRNA expression (shRNA). Regulated expression of the shRNA is conferred within an adenoviral vector by a modified RNA polymerase III promoter containing a Tet operator element adjacent to the transcription start site. In the presence of the tetracycline repressor protein (TetR), encoded in a second adenovirus, shRNA expression is repressed. Addition of tetracycline abolishes TetR binding, allowing shRNA transcription to proceed, and leading to reduced mRNA and protein expression. Here we establish the efficacy of this system by delivering siRNA targeted against the transcriptional coactivator p300. Our results show tetracycline-mediated inhibition of p300 mRNA and protein accumulation in the presence of both viruses, but no effect in the absence of antibiotic. Regulated adenoviral shRNA vectors offer the advantages of being able to infect a wide array of replicating and nonreplicating cells and of allowing temporal control of gene silencing.


Asunto(s)
Adenoviridae/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN/genética , Línea Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Vectores Genéticos , Células HeLa , Humanos , Inmunohistoquímica , Cinética , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Polimerasa III/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/química , Proteínas Represoras/metabolismo , Tetraciclina/farmacología
4.
DNA Repair (Amst) ; 10(10): 1003-13, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21840268

RESUMEN

Poly(ADP)-ribose polymerase (PARP) inhibitors modify the enzymatic activity of PARP1/2. When certain PARP inhibitors are used either alone or in combination with DNA damage agents they may cause a G2/M mitotic arrest and/or apoptosis in a susceptible genetic context. PARP1 interacts with the cell cycle checkpoint proteins Ataxia Telangectasia Mutated (ATM) and ATM and Rad3-related (ATR) and therefore may influence growth arrest cascades. The PARP inhibitor PJ34 causes a mitotic arrest by an unknown mechanism in certain cell lines, therefore we asked whether PJ34 conditionally activated the checkpoint pathways and which downstream targets were necessary for mitotic arrest. We found that PJ34 produced a concentration dependent G2/M mitotic arrest and differentially affected cell survival in cells with diverse genetic backgrounds. p53 was activated and phosphorylated at Serine15 followed by p21 gene activation through both p53-dependent and -independent pathways. The mitotic arrest was caffeine sensitive and UCN01 insensitive and did not absolutely require p53, ATM or Chk1, while p21 was necessary for maintaining the growth arrest. Significantly, by using stable knockdown cell lines, we found that neither PARP1 nor PARP2 was required for any of these effects produced by PJ34. These results raise questions and cautions for evaluating PARP inhibitor effectiveness, suggesting whether effects should be considered not only on PARP's diverse ADP-ribosylation independent protein interactions but also on homologous proteins that may be producing either overlapping or distinct effect.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis/efectos de los fármacos , Fenantrenos/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Cafeína/farmacología , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ADN/genética , Femenino , Silenciador del Gen , Células HeLa , Humanos , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
5.
J Biol Chem ; 282(13): 9678-9687, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17272271

RESUMEN

The highly related acetyltransferases, p300 and CREB-binding protein (CBP) are coactivators of signal-responsive transcriptional activation. In addition, recent evidence suggests that p300/CBP also interacts directly with complexes that mediate DNA replication and repair. In this report, we show that loss of p300/CBP in mammalian cells results in a defect in the cell cycle arrest induced by stalled DNA replication. We demonstrate that complexes containing p300/CBP and ATR can be detected in mammalian cells, and that the downstream kinase CHK1 fails to be phosphorylated in response to stalled DNA replication in cells that lack p300/CBP. These observations broaden the roles for the p300/CBP acetyltransferases to include the modulation of chromatin structure and function during DNA metabolic events as well as for transcription.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Histona Acetiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteína de Unión a CREB/fisiología , Proteínas de Ciclo Celular/fisiología , Células HeLa , Histona Acetiltransferasas/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Transcripción/fisiología , Factores de Transcripción p300-CBP
6.
J Biol Chem ; 280(34): 30604-10, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-15965232

RESUMEN

The transcriptional co-activator p300 has been reported to regulate the tumor suppressor p53 and its ortholog p73. Here we describe a study showing that this coactivator also regulates the transcriptional function of p63. p300 bound to the N-terminal domain of p63gamma, and p63gamma bound to the N terminus of p300 in vitro and in cells. p300, but not its acetylase-defective mutant AT2, stimulated p63gamma-dependent transcription and induction of p21 in cells, consequently leading to G1 arrest. Inversely, the deltaN-p63gamma isoform as well as p300AT2 inhibited the induction of p21 by p63gamma. These results suggest that p300 regulates p63-dependent transcription of p21.


Asunto(s)
Genes Supresores de Tumor/fisiología , Proteínas Nucleares/fisiología , Fosfoproteínas/fisiología , Transactivadores/fisiología , Transcripción Genética , Adenoviridae/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteínas de Unión al ADN , Glutatión Transferasa/metabolismo , Histidina/química , Humanos , Inmunoprecipitación , Mutación , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Activación Transcripcional , Transfección , Proteínas Supresoras de Tumor
7.
J Biol Chem ; 278(25): 22615-22, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12702724

RESUMEN

Muscle cell differentiation is controlled by a complex set of interactions between tissue restricted transcription factors, ubiquitously expressed transcription factors, and cell cycle regulatory proteins. We previously found that amplification of MDM2 in rhabdomyosarcoma cells interferes with MyoD activity and consequently inhibits overt muscle cell differentiation (1). Recently, we found that MDM2 interacts with Sp1 and inhibits Sp1-dependent transcription and that pRb can restore Sp1 activity by displacing MDM2 from Sp1 (2). In this report, we show that forced expression of Sp1 can restore MyoD activity and restore overt muscle cell differentiation in cells with amplified MDM2. Furthermore, we show that pRb can also restore MyoD activity and muscle cell differentiation in cells with amplified MDM2. Surprisingly, we found that the MyoD-interacting domain of pRb is dispensable for this activity. We show that the C-terminal, MDM2-interacting domain of pRb is both necessary and sufficient to restore muscle cell differentiation in cells with amplified MDM2. We also show that the C-terminal MDM2-interacting domain of pRb can promote premature differentiation of proliferating myoblast cells. Our data support a model in which the pRb-MDM2 interaction modulates Sp1 activity during normal muscle cell differentiation.


Asunto(s)
Músculo Esquelético/citología , Proteína MioD/metabolismo , Proteínas Nucleares , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Retinoblastoma/metabolismo , Factor de Transcripción Sp1/metabolismo , Células 3T3 , Animales , Diferenciación Celular , Línea Celular , Amplificación de Genes , Cinética , Ratones , Proteína MioD/genética , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA