Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Phys Chem Chem Phys ; 25(10): 7401-7406, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36846923

RESUMEN

Current organic ultraviolet (UV) filters found in sunscreen formulations suffer a number of drawbacks. In this work, we have synthesised four biomimetic molecules built on the mycosporine molecular scaffold (a natural UV filter) with varying substituents at one of the carbons on the ring and investigated their photoprotective properties. From our findings, we infer design guidelines which may have a direct result on the production of next generation UV filters.

2.
Phys Chem Chem Phys ; 25(18): 12791-12799, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37129056

RESUMEN

Coumaric acids and flavonoids play pivotal roles in protecting plants against ultraviolet radiation (UVR) exposure. In this work, we focus our photoprotection studies on p-coumaric acid and the flavonoid naringenin chalcone. Photoprotection is well-understood in p-coumaric acid; in contrast, information surrounding photoprotection in naringenin chalcone is lacking. Additionally, and vitally, how these two species work in unison to provide photoprotection across the UV-B and UV-A is unknown. Herein, we employ transient absorption spectroscopy together with steady-state irradiation studies to unravel the photoprotection mechanism of a solution of p-coumaric acid and naringenin chalcone. We find that the excited state dynamics of p-coumaric acid are significantly altered in the presence of naringenin chalcone. This finding concurs with quenching of the p-coumaric acid fluorescence with increasing concentration of naringenin chalcone. We propose a Förster energy transfer mechanism is operative via the formation of dipole-dipole interactions between p-coumaric acid and naringenin chalcone. To our knowledge, this is the first demonstration in plants of a synergic effect between two classes of phenolics to bypass the potentially damaging effects of UVR.


Asunto(s)
Frutas , Solanum lycopersicum , Frutas/química , Rayos Ultravioleta , Flavonoides/análisis , Flavonoides/química , Fenoles , Plantas/química , Análisis Espectral
3.
J Phys Chem A ; 127(22): 4880-4887, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37252729

RESUMEN

In this work, different levels of quantum computational models such as MP2, ADC(2), CASSCF/CASPT2, and DFT/TD-DFT have been employed to investigate the photophysics and photostability of a mycosporine system, mycosporine glycine (MyG). First of all, a molecular mechanics approach based on the Monte Carlo conformational search has been employed to investigate the possible geometry structures of MyG. Then, comprehensive studies on the electronic excited states and deactivation mechanism have been conducted on the most stable conformer. The first optically bright electronic transition responsible for the UV absorption of MyG has been assigned as the S2 (1ππ*) owing to the large oscillator strength (0.450). The first excited electronic state (S1) has been assigned as an optically dark (1nπ*) state. From the nonadiabatic dynamics simulation model, we propose that the initial population in the S2 (1ππ*) state transfers to the S1 state in under 100 fs, through an S2/S1 conical intersection (CI). The barrierless S1 potential energy curves then drive the excited system to the S1/S0 CI. This latter CI provides a significant route for ultrafast deactivation of the system to the ground state via internal conversion.

4.
J Phys Chem A ; 127(31): 6425-6436, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37494478

RESUMEN

Excess energy redistribution dynamics operating in nitrobenzene under hexane and isopropanol solvation were investigated using ultrafast transient absorption spectroscopy (TAS) with a 267 nm pump and a 340-750 nm white light continuum probe. The use of a nonpolar hexane solvent provides a proxy to the gas-phase environment, and the findings are directly compared with a recent time-resolved photoelectron imaging (TRPEI) study on nitrobenzene using the same excitation wavelength [L. Saalbach et al., J. Phys. Chem. A 2021, 125, 7174-7184]. Of note is the observation of a 1/e lifetime of 3.5-6.7 ps in the TAS data that was absent in the TRPEI measurements. This is interpreted as a dynamical signature of the T2 state in nitrobenzene─analogous to observations in the related nitronaphthalene system, and additionally supported by previous quantum chemistry calculations. The discrepancy between the TAS and TRPEI measurements is discussed, with the overall findings providing an example of how different spectroscopic techniques can exhibit varying sensitivity to specific steps along the overall reaction coordinate connecting reactants to photoproducts.

5.
Molecules ; 28(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630405

RESUMEN

A natural UV-absorbing chromophore extracted from sphagnum mosses, sphagnic acid, is proposed as a new natural support to chemical UV filters for use in cosmetic applications. Sphagnic acid is structurally related to the cinnamate family of molecules, known for their strong UV absorption, efficient non-radiative decay, and antioxidant properties. In this study, transient electronic absorption spectroscopy is used, in conjunction with steady-state techniques, to model the photodynamics following photoexcitation of sphagnic acid in different solvent systems. Sphagnic acid was found in each system to relax with lifetimes of ~200 fs and ~1.5 ps before generating a cis-isomer photoproduct. This study helps to elucidate the photoprotective mechanism of a new potential natural support to sunscreens, from a unique plant source.


Asunto(s)
Sphagnopsida , Solventes , Antioxidantes , Cinamatos , Isomerismo
6.
J Phys Chem A ; 126(15): 2299-2308, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35394773

RESUMEN

Given the negative impacts of overexposure to ultraviolet radiation (UVR) on humans, sunscreens have become a widely used product. Certain ingredients within sunscreens are responsible for photoprotection and these are known, collectively herein, as ultraviolet (UV) filters. Generally speaking, organic UV filters work by absorbing the potentially harmful UVR and dissipating this energy as harmless heat. This process happens on picosecond time scales and so femtosecond pump-probe spectroscopy (FPPS) is an ideal technique for tracking this energy conversion in real time. Coupling FPPS with complementary techniques, including steady-state spectroscopy and computational methods, can provide a detailed mechanistic picture of how UV filters provide photoprotection. As such, FPPS is crucial in aiding the future design of UV filters. This Perspective sheds light on the advancements made over the past two years on both approved and nature-inspired UV filters. Moreover, we suggest where FPPS can be further utilized within sunscreen applications for future considerations.


Asunto(s)
Protectores Solares , Rayos Ultravioleta , Humanos , Análisis Espectral , Protectores Solares/química
7.
J Phys Chem A ; 126(45): 8388-8397, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36323639

RESUMEN

Solar exposure of avobenzone, one of the most widely used commercial UVA filters on the market, is known to cause significant degradation. This finding has fueled research into developing photostabilizer molecules. In an effort to provide insight into their stand-alone photoprotection properties, the excited state dynamics of the photostabilizer, 3-(3,4,5-trimethoxybenzylidene) pentane-2,4-dione (TMBP), and its phenolic derivative, 3-(4-hydroxy-3,5-dimethoxybenzylidene) pentane-2,4-dione (DMBP), were studied with ultrafast transient absorption spectroscopy. Solutions of TMPB and DMBP in ethanol and in an industry-standard emollient, as well as TMBP and DMBP deposited on synthetic skin mimic, were investigated. These experiments were allied with computational methods to aid interpretation of the experimental data. Upon photoexcitation, these photostabilizers repopulate the electronic ground state via nonradiative decay within a few picoseconds involving a twisted intramolecular charge transfer configuration in the excited state, followed by internal conversion and subsequent vibrational cooling in the ground state. This finding implies that, aside from acting as a photostabilizer to certain UV filters, TMBP and DMBP may offer additional photoprotection in a sunscreen formulation as a stand-alone UV filter. Finally, TMBP and DMBP could also find applications as molecular photon-to-heat converters.


Asunto(s)
Pentanos , Rayos Ultravioleta , Protectores Solares/química
8.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408670

RESUMEN

Mycosporine-like amino acids are a prevalent form of photoprotection in micro- and macro-organisms. Using a combination of natural product extraction/purification and femtosecond transient absorption spectroscopy, we studied the relaxation pathway for a common mycosporine-like amino acid pair, usujirene and its geometric isomer palythene, in the first few nanoseconds following photoexcitation. Our studies show that the electronic excited state lifetimes of these molecules persist for only a few hundred femtoseconds before the excited state population is funneled through an energetically accessible conical intersection with subsequent vibrational energy transfer to the solvent. We found that a minor portion of the isomer pair did not recover to their original state within 3 ns after photoexcitation. We investigated the long-term photostability using continuous irradiation at a single wavelength and with a solar simulator to mimic a more real-life environment; high levels of photostability were observed in both experiments. Finally, we employed computational methods to elucidate the photochemical and photophysical properties of usujirene and palythene as well as to reconcile the photoprotective mechanism.


Asunto(s)
Aminoácidos , Aminoácidos/química , Isomerismo
9.
J Am Chem Soc ; 143(1): 382-389, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33348987

RESUMEN

Artificial light-harvesting systems in aqueous media which mimic nature are of significant importance; however, they are often restrained by the solubility and the undesired aggregation-caused quenching effect of the hydrophobic chromophores. Here, we report a generalized strategy toward the construction of efficient artificial light-harvesting systems based on supramolecular peptide nanotubes in water. By molecularly aligning the hydrophobic chromophores along the nanotubes in a slipped manner, an artificial light-harvesting system with a two-step sequential Förster resonance energy transfer process is successfully fabricated, showing an energy transfer efficiency up to 95% and a remarkably high fluorescence quantum yield of 30%, along with high stability. Furthermore, the spectral emission could be continuously tuned from blue through green to orange, as well as outputted as a white light continuum with a fluorescence quantum yield of 29.9%. Our findings provide a versatile approach of designing efficient artificial light-harvesting systems and constructing highly emissive organic materials in aqueous media.

10.
Phys Chem Chem Phys ; 23(42): 24439-24448, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694312

RESUMEN

Avobenzone is an ultraviolet (UV) filter that is often included in sunscreen formulations despite its lack of photostability. Its inclusion is necessary due to few existing alternatives for photoprotection in the UVA region (320-400 nm). To better understand and predict the photostability of avobenzone, ultrafast transient electronic absorption spectroscopy (TEAS) has been used to study the effects of solvent (including emollients), concentration and skin surface temperature on its excited-state relaxation mechanism, following photoexcitation with UVA radiation (∼350 nm). Subtle differences between the excited-state lifetimes were found between the systems, but the TEAS spectral features were qualitatively the same for all solution and temperature combinations. Alongside TEAS measurements, UV filter/emollient blends containing avobenzone were irradiated using simulated solar light and their degradation tracked using steady-state UV-visible spectroscopy. Sun protection factor (SPF) and UVA protection factor (UVA-PF) assessments were also carried out on representative oil phases (higher concentration blends), which could be used to formulate oil-in-water sunscreens. It was found that there was an apparent concentration dependence on the long-term photoprotective efficacy of these mixtures, which could be linked to the ultrafast photodynamics by the presence of a ground-state bleach offset. This combination of techniques shows potential for correlating long-term behaviours (minutes to hours) of avobenzone with its ultrafast photophysics (femtoseconds to nanoseconds), bridging the gap between fundamental photophysics/photochemistry and commercial sunscreen design.


Asunto(s)
Propiofenonas/química , Protectores Solares/química , Composición de Medicamentos , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Espectrofotometría Ultravioleta
11.
Phys Chem Chem Phys ; 23(40): 23242-23255, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34632473

RESUMEN

The negative effects of ultraviolet radiation (UVR) on human skin have led to the widespread use of sunscreens, i.e. skincare products containing UV filters to absorb, reflect or otherwise block UVR. The mechanisms by which UV filters dissipate energy following photoexcitation, i.e. their photodynamics, can crucially determine a molecule's performance as a sunscreen UV filter. In this work, we evaluate the effects of substituent position on the in-solution relaxation pathways of two derivates of methyl anthranilate (an ortho compound that is a precursor to the UV filter meradimate), meta- and para-methyl anthranilate, m-MA and p-MA, respectively. The photodynamics of m-MA were found to be sensitive to solvent polarity: its emission spectra show larger Stokes shifts with increasing polarity, and both the fluorescence quantum yield and lifetimes for m-MA increase in polar solvents. While the Stokes shifts for p-MA are much milder and more independent of solvent environment than those of m-MA, we find its fluorescence quantum yields to be sensitive not only to solvent polarity but to the hydrogen bonding character of the solvent. In both cases (m- and p-MA) we have found common computational methods to be insufficient to appropriately model the observed spectroscopic data, likely due to an inability to account for explicit solvent interactions, a known challenge in computational chemistry. Therefore, apart from providing insight into the photodynamics of anthranilate derivatives, the work presented here also provides a case study that may be of use to theoretical chemists looking to improve and develop explicit solvent computational methods.


Asunto(s)
Ácido 4-Aminobenzoico/química , metaminobenzoatos/química , Teoría Cuántica , Solventes/química , Espectrometría de Fluorescencia , Protectores Solares/química , Rayos Ultravioleta
12.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946701

RESUMEN

Para-hydroxy methylcinnamate is part of the cinnamate family of molecules. Experimental and computational studies have suggested conflicting non-radiative decay routes after photoexcitation to its S1(ππ*) state. One non-radiative decay route involves intersystem crossing mediated by an optically dark singlet state, whilst the other involves direct intersystem crossing to a triplet state. Furthermore, irrespective of the decay mechanism, the lifetime of the initially populated S1(ππ*) state is yet to be accurately measured. In this study, we use time-resolved ion-yield and photoelectron spectroscopies to precisely determine the S1(ππ*) lifetime for the s-cis conformer of para-hydroxy methylcinnamate, combined with time-dependent density functional theory to determine the major non-radiative decay route. We find the S1(ππ*) state lifetime of s-cis para-hydroxy methylcinnamate to be ∼2.5 picoseconds, and the major non-radiative decay route to follow the [1ππ*→1nπ*→3ππ*→S0] pathway. These results also concur with previous photodynamical studies on structurally similar molecules, such as para-coumaric acid and methylcinnamate.

13.
Molecules ; 26(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946713

RESUMEN

Plants, as with humans, require photoprotection against the potentially damaging effects of overexposure to ultraviolet (UV) radiation. Previously, sinapoyl malate (SM) was identified as the photoprotective agent in thale cress. Here, we seek to identify the photoprotective agent in a similar plant, garden cress, which is currently used in the skincare product Detoxophane nc. To achieve this, we explore the photodynamics of both the garden cress sprout extract and Detoxophane nc with femtosecond transient electronic absorption spectroscopy. With the assistance of liquid chromatography-mass spectrometry, we determine that the main UV-absorbing compound in garden cress sprout extract is SM. Importantly, our studies reveal that the photoprotection properties of the SM in the garden cress sprout extract present in Detoxophane nc are not compromised by the formulation environment. The result suggests that Detoxophane nc containing the garden cress sprout extract may offer additional photoprotection to the end user in the form of a UV filter booster.


Asunto(s)
Lepidium sativum/química , Extractos Vegetales/química , Plantones/química , Protectores Solares/química
14.
Chemphyschem ; 21(17): 2006-2011, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32638475

RESUMEN

Sinapoyl malate is a natural plant sunscreen molecule which protects leaves from harmful ultraviolet radiation. Here, the ultrafast dynamics of three sinapoyl malate derivatives, sinapoyl L-dimethyl malate, sinapoyl L-diethyl malate and sinapoyl L-di-t-butyl malate, have been studied using transient electronic absorption spectroscopy, in a dioxane and methanol solvent environment to investigate how well preserved these dynamics remain with increasing molecular complexity. In all cases it was found that, upon photoexcitation, deactivation occurs via a trans-cis isomerisation pathway within ∼20-30 ps. This cis-photoproduct, formed during photodeactivation, is stable and longed-lived for all molecules in both solvents. The incredible levels of conservation of the isomerisation pathway with increased molecular complexity demonstrate the efficacy of these molecules as ultraviolet photoprotectors, even in strongly perturbing solvents. As such, we suggest these molecules might be well-suited for augmentations to further improve their photoprotective efficacy or chemical compatibility with other components of sunscreen mixtures, whilst conserving their underlying photodynamic properties.

15.
Phys Chem Chem Phys ; 22(43): 25390-25395, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33141123

RESUMEN

Many current ultraviolet filters present potential hazards both to humans and to the natural environment. As such there is a new impetus to develop, through intimate characterisation, ultraviolet filters for use in cosmeceuticals. Here we report a new class of organic molecules which have a strong absorption band across the ultraviolet-A and -B regions of the electromagnetic spectrum and high photostability. We have performed ultrafast transient electronic absorption spectroscopy and steady-state spectroscopies, alongside computational studies to track and manipulate photoprotection mechanisms. Our results present a potentially new generation of ultraviolet filters for use in commercial formulations.


Asunto(s)
Modelos Químicos , Protectores Solares/química , Rayos Ultravioleta , Análisis Espectral
16.
Phys Chem Chem Phys ; 22(27): 15509-15519, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32602867

RESUMEN

Homosalate (HMS) is a salicylate molecule that is commonly included within commercial sunscreen formulations to provide protection from the adverse effects of ultraviolet (UV) radiation exposure. In the present work, the mechanisms by which HMS provides UV photoprotection are unravelled, using a multi-pronged approach involving a combination of time-resolved ultrafast laser spectroscopy in the gas-phase and in solution, laser-induced fluorescence, steady-state absorption spectroscopy, and computational methods. The unique combination of these techniques allow us to show that the enol tautomer of HMS undergoes ultrafast excited state intramolecular proton transfer (ESIPT) upon photoexcitation in the UVB (290-320 nm) region; once in the keto tautomer, the excess energy is predominantly dissipated non-radiatively. Sharp transitions are observed in the LIF spectrum at close-to-origin excitation energies, which points towards the potential presence of a second conformer that does not undergo ESIPT. These studies demonstrate that, overall, HMS exhibits mostly favourable photophysical characteristics of a UV filter for inclusion in sunscreen formulations.


Asunto(s)
Salicilatos/química , Rayos Ultravioleta , Estructura Molecular , Procesos Fotoquímicos
17.
Molecules ; 25(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872380

RESUMEN

There are several drawbacks with the current commercially available ultraviolet (UV) filters used in sunscreen formulations, namely deleterious human and ecotoxic effects. As a result of the drawbacks, a current research interest is in identifying and designing new UV filters. One approach that has been explored in recent years is to use nature as inspiration, which is the focus of this review. Both plants and microorganisms have adapted to synthesize their own photoprotective molecules to guard their DNA from potentially harmful UV radiation. The relaxation mechanism of a molecule after it has been photoexcited can be unravelled by several techniques, the ones of most interest for this review being ultrafast spectroscopy and computational methods. Within the literature, both techniques have been implemented on plant-, and microbial-inspired UV filters to better understand their photoprotective roles in nature. This review aims to explore these findings for both families of nature-inspired UV filters in the hope of guiding the future design of sunscreens.


Asunto(s)
Procesos Fotoquímicos , Análisis Espectral , Protectores Solares/química , Protectores Solares/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Humanos , Modelos Teóricos , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Plantas/química , Plantas/metabolismo , Plantas/efectos de la radiación , Análisis Espectral/métodos , Relación Estructura-Actividad , Protectores Solares/análisis
18.
Phys Chem Chem Phys ; 21(26): 14394-14406, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30860208

RESUMEN

Aniline, an important model system for biological chromophores, undergoes ultrafast H-atom loss upon absorption of an ultraviolet photon. By varying the number and position of methyl substituents on both the aromatic ring and amine functional group, we explore the ultrafast production of photofragments as a function of molecular structure. Both N-methyl aniline and 3,5-dimethyl aniline show altered H-atom loss behaviour compared to aniline, while no evidence for CH3 loss was found from either N-methyl aniline or N,N-dimethyl aniline. With the addition of time-resolved photoelectron spectroscopy, the photofragment appearance times are matched to excited state relaxation pathways. Evidence for a sequential excited state relaxation mechanism, potentially involving a valence-to-Rydberg decay mechanism, will be presented. Such a global, bottom-up approach to molecular photochemistry is crucial to understanding the dissociative pathways and excited state decay mechanisms of biomolecule photoprotection in nature.

19.
Phys Chem Chem Phys ; 21(19): 9987-9995, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31041956

RESUMEN

We present results obtained using the ab initio multiple cloning (AIMC) method to simulate fully quantum dynamics for imidazole and its structural isomer pyrazole along with their selectively deuterated species. We simulate the ultrafast dissociation of the N-H/D bond for these molecules along the repulsive 1πσ* state which agrees well with previous experimental results. Our results give evidence for a two-stage dissociation of the N-H/D bond on the sub-50 fs regime for imidazole, pyrazole and their selectively deuterated species, and give evidence for the importance of the repulsive 1πσ* state along the N-H/D bond coordinate for the relaxation of both imidazole and pyrazole. The ability of these calculations to reproduce experimental results lends confidence that larger complex systems could be explored with predictive capabilities with the AIMC method. These results also confirm the ability of the AIMC method to add detailed insights into which experiments are blind.

20.
Phys Chem Chem Phys ; 21(7): 3832-3841, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30698166

RESUMEN

The ultrafast photodissociation dynamics of 2-ethylpyrrole (2-EP) is simulated in a fully quantum manner on the S1 and S2 πσ* states by the ab initio multiple cloning (AIMC) method. AIMC treats electrons with accurate electronic structure methods "on the fly", and nuclear dynamics with wavefunction propagation via a basis set of Ehrenfest trajectory guided Gaussian wavepackets. Total kinetic energy release (TKER) spectra are produced, as well as velocity map images and N-H dissociation times. These are compared to results from time-resolved velocity map imaging studies, and the AIMC method is able to provide quantitative reproduction of experimental data, including dissociation times of 50-80 fs. Novel insight into the dissociation mechanism is then obtained, with the experimentally obtained time constant shown to be composed of two components. Firstly, there is a contribution in <50 fs from 2-EP molecules that have sufficient energy in the N-H stretch coordinate to dissociate almost immediately over the barrier, and this is followed by a second slower contribution from 2-EP molecules that must sample the potential energy surface before finding a way around the barrier to dissociate. This two component mechanism is not observed experimentally due to the temporal widths of the laser pulses obscuring the dynamics in the <50 fs window, and is shown for the first time via theory. Calculations are also performed on selectively deuterated 2-EP, demonstrating that AIMC is able to produce a kinetic isotope effect for the dissociation time constant, and correctly predict a shift to lower energy in the TKER spectrum. The S2 πσ* state is also shown to be unstable with respect to the S1 πσ* state, with the N-H dissociation proceeding along S1 when initially excited to S2. This work demonstrates that the combination of state of the art theory and experiments can provide unprecedented novel insight into the N-H dissociation mechanism, with the tantalising prospect of providing insight into more general heteroatom hydride bond dissociation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA