Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 97(8): e0078123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565748

RESUMEN

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Ribonucleótido Reductasas , Humanos , Recién Nacido , Citidina Desaminasa/metabolismo , Citomegalovirus/genética , Replicación del ADN , ADN Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Inmediatas-Precoces/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
2.
BMC Cancer ; 19(1): 62, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642298

RESUMEN

BACKGROUND: Osteosarcoma is the most prevalent primary bone malignancy in children and young adults. These tumors are highly metastatic, leading to poor outcome. We previously demonstrated that Cysteine-rich protein 61 (CYR61/CCN1) expression level is correlated to osteosarcoma aggressiveness in preclinical model and in patient tumor samples. The aim of the present study was to investigate the CYR61-induced intracellular mechanisms leading to the acquisition of an invasive phenotype by osteosarcoma cells. METHODS: Modified murine and human osteosarcoma cell lines were evaluated for cell adhesion, aggregation (spheroid), motility (wound healing assay), phenotypic markers expression (RT-qPCR, western blot). Cell-derived xenograft FFPE samples and patients samples (TMA) were assessed by IHC. RESULTS: CYR61 levels controlled the expression of markers related to an Epithelial-mesenchymal transition (EMT)-like process, allowing tumor cells to migrate acquiring a competent morphology, and to be able to invade the surrounding stroma. This phenotypic shift indeed correlated with tumor grade and aggressiveness in patient samples and with the metastatic dissemination potential in cell-derived xenograft models. Unlike EGFR or PDGFR, IGF1Rß levels correlated with CYR61 and N-cadherin levels, and with the aggressiveness of osteosarcoma and overall survival. The expression levels of IGF1Rß/IGF1 axis were controlled by CYR61, and anti-IGF1 neutralizing antibody prevented the CYR61-induced phenotypic shift, aggregation, and motility abilities. CONCLUSIONS: Taken together, our study provides new evidence that CYR61 acts as a key inducing factor in the metastatic progression of osteosarcoma by playing a critical role in primary tumor dissemination, with a process associated with IGF1/IGFR stimulation. This suggests that CYR61 may represent a potential pivotal target for therapeutic management of metastases spreading in osteosarcoma, in correlation with IGF1/IGFR pathway.


Asunto(s)
Neoplasias Óseas/etiología , Neoplasias Óseas/metabolismo , Proteína 61 Rica en Cisteína/genética , Transición Epitelial-Mesenquimal/genética , Osteosarcoma/etiología , Osteosarcoma/metabolismo , Receptores de Somatomedina/metabolismo , Animales , Biomarcadores de Tumor , Neoplasias Óseas/patología , Cadherinas/metabolismo , Adhesión Celular/genética , Comunicación Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proteína 61 Rica en Cisteína/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/secundario , Sistema de Señalización de MAP Quinasas , Ratones , Osteosarcoma/patología , Receptor IGF Tipo 1
3.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746158

RESUMEN

Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer 1-7 , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers. APOBEC3 mutational signatures were independently associated with shorter progression-free survival on antiestrogen plus CDK4/6 inhibitor combination therapy in patients with HR+ metastatic breast cancer. Whole genome sequencing (WGS) of breast cancer models and selected paired primary-metastatic samples demonstrated that active APOBEC3 mutagenesis promoted resistance to both endocrine and targeted therapies through characteristic alterations such as RB1 loss-of-function mutations. Evidence of APOBEC3 activity in pre-treatment samples illustrated a pervasive role for this mutational process in breast cancer evolution. The study reveals APOBEC3 mutagenesis to be a frequent mediator of therapy resistance in breast cancer and highlights its potential as a biomarker and target for overcoming resistance.

4.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778493

RESUMEN

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting involvement of an immediate early or early (IE-E) viral protein. In support of this mechanism, cycloheximide treatment of HCMV-infected cells prevents the expression of viral proteins and simultaneously blocks APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which is a viral DNA synthesis inhibitor affecting late protein expression, still permits A3B relocalization. These results combine to show that the beta-herpesvirus HCMV uses a fundamentally different, RNR-independent molecular mechanism to antagonize APOBEC3B. Importance: Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses in order to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.

5.
Cells ; 12(8)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190094

RESUMEN

APOBEC3B (A3B) is aberrantly overexpressed in a subset of breast cancers, where it associates with advanced disease, poor prognosis, and treatment resistance, yet the causes of A3B dysregulation in breast cancer remain unclear. Here, A3B mRNA and protein expression levels were quantified in different cell lines and breast tumors and related to cell cycle markers using RT-qPCR and multiplex immunofluorescence imaging. The inducibility of A3B expression during the cell cycle was additionally addressed after cell cycle synchronization with multiple methods. First, we found that A3B protein levels within cell lines and tumors are heterogeneous and associate strongly with the proliferation marker Cyclin B1 characteristic of the G2/M phase of the cell cycle. Second, in multiple breast cancer cell lines with high A3B, expression levels were observed to oscillate throughout the cell cycle and again associate with Cyclin B1. Third, induction of A3B expression is potently repressed throughout G0/early G1, likely by RB/E2F pathway effector proteins. Fourth, in cells with low A3B, induction of A3B through the PKC/ncNF-κB pathway occurs predominantly in actively proliferating cells and is largely absent in cells arrested in G0. Altogether, these results support a model in which dysregulated A3B overexpression in breast cancer is the cumulative result of proliferation-associated relief from repression with concomitant pathway activation during the G2/M phase of the cell cycle.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Ciclina B1/genética , División Celular , Ciclo Celular/genética , Células MCF-7 , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
6.
Genome Biol ; 24(1): 267, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001542

RESUMEN

BACKGROUND: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS: This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.


Asunto(s)
Neoplasias , Edición de ARN , Humanos , Animales , Ratones , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Mutación , Neoplasias/patología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , ADN/metabolismo
7.
Nat Genet ; 55(10): 1721-1734, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735199

RESUMEN

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.


Asunto(s)
Neoplasias , Estructuras R-Loop , Humanos , ADN de Cadena Simple/genética , Estudio de Asociación del Genoma Completo , Mutagénesis , Neoplasias/genética , Neoplasias/patología , Citidina Desaminasa/genética , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
8.
Cancers (Basel) ; 13(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920424

RESUMEN

The first Tribbles protein was identified as critical for the coordination of morphogenesis in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases. In this review, we provide an overview of the regulation of TRIB3 gene expression at both transcriptional and post-translational levels. Despite the absence of kinase activity, TRIB3 interferes with a broad range of cellular processes through protein-protein interactions. In fact, TRIB3 acts as an adaptor/scaffold protein for many other proteins such as kinase-dependent proteins, transcription factors, ubiquitin ligases, or even components of the spliceosome machinery. We then state the contribution of TRIB3 to cancer development, progression, and metastasis. TRIB3 dysregulation can be associated with good or bad prognosis. Indeed, as TRIB3 interacts with and regulates the activity of many key signaling components, it can act as a tumor-suppressor or oncogene in a context-dependent manner.

9.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831022

RESUMEN

CONTEXT: Osteosarcoma is the most common primary solid malignancy of the bone, mainly affecting pediatric patients. The main clinical issues are chemoresistance and metastatic spread, leading to a survival rate stagnating around 60% for four decades. PURPOSE: Here, we investigated the effect of simvastatin as adjuvant therapy on chemotherapy. METHODS: Cell viability was assessed by the MTT test, and a combination index was evaluated by an isobologram approach. Cell motility was assessed by wound-healing assay. Cell-derived xenograft models were established in mice. FFPE tumor samples were assessed by immunohistochemistry. RESULTS: In vitro experiments indicate that simvastatin synergized the conventional chemotherapy drugs' inhibitory effect on cell viability. Functional assays reveal that simvastatin supplementation favored the anticancer mechanism of action of the tested chemotherapy drugs, such as DNA damage through intercalation or direct alkylation and disorganization of microtubules. Additionally, we show that even though simvastatin alone did not modify tumor behavior, it potentiated the inhibitory effect of doxorubicin on primary tumor growth (+50%, p < 0.05) and metastatic spread (+50%, p < 0.05). Our results provide evidence that simvastatin exerted an anti-tumor effect combined with chemotherapy in the preclinical murine model and represents valuable alternative adjuvant therapy that needs further investigation in clinical trials.

10.
Cancer Res ; 80(15): 3062-3069, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32245795

RESUMEN

Next-generation sequencing has sparked the exploration of cancer genomes, with the aim of discovering the genetic etiology of the disease and proposing rationally designed therapeutic interventions. Driver gene alterations have been comprehensively charted, but the improvement of cancer patient management somewhat lags behind these basic breakthroughs. Recently, large-scale sequencing that focused on metastasis, the main cause of cancer-related deaths, has shed new light on the driving forces at work during disease progression, particularly in breast cancer. Despite a fairly stable pool of driver genetic alterations between early and late disease, a number of therapeutically targetable mutations have been found enriched in metastatic samples. The molecular processes fueling disease progression have been delineated in recent studies and the clonal composition of breast cancer samples can be examined in detail. Here we discuss how these findings may be combined to improve the diagnosis of breast cancer to better select patients at risk, and to identify targeted agents to treat advanced diseases and to design therapeutic strategies exploiting vulnerabilities of cancer cells rooted in their ability to evolve and drive disease progression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Evolución Clonal/genética , Terapia Molecular Dirigida , Mutación , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Evolución Clonal/efectos de los fármacos , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Terapia Molecular Dirigida/efectos adversos , Terapia Molecular Dirigida/métodos , Metástasis de la Neoplasia , Pronóstico
11.
Cancer Res ; 80(11): 2190-2203, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32245792

RESUMEN

Rapalogs have become standard-of-care in patients with metastatic breast, kidney, and neuroendocrine cancers. Nevertheless, tumor escape occurs after several months in most patients, highlighting the need to understand mechanisms of resistance. Using a panel of cancer cell lines, we show that rapalogs downregulate the putative protein kinase TRIB3 (tribbles pseudokinase 3). Blood samples of a small cohort of patients with cancer treated with rapalogs confirmed downregulation of TRIB3. Downregulation of TRIB3 was mediated by LRRFIP1 independently of mTOR and disrupted its interaction with the spliceosome, where it participated in rapalog-induced deregulation of RNA splicing. Conversely, overexpression of TRIB3 in a panel of cancer cell lines abolished the cytotoxic effects of rapalogs. These findings identify TRIB3 as a key component of the spliceosome, whose repression contributes significantly to the mechanism of resistance to rapalog therapy. SIGNIFICANCE: Independent of mTOR signaling, rapalogs induce cytoxicity by dysregulating spliceosome function via repression of TRIB3, the loss of which may, in the long term, contribute to therapeutic resistance.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/genética , Sirolimus/farmacología , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Everolimus/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Neoplasias/sangre , Neoplasias/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN/efectos de los fármacos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/biosíntesis , Sirolimus/análogos & derivados , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
12.
Sci Rep ; 9(1): 12301, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444479

RESUMEN

Osteosarcoma is the most prevalent primary bone malignancy in children and young adults. Resistance to chemotherapy remains a key challenge for effective treatment of patients with osteosarcoma. The aim of the present study was to investigate the preventive role of metallothionein-2A (MT2A) in response to cytotoxic effects of chemotherapy. A panel of human and murine osteosarcoma cell lines, modified for MT2A were evaluated for cell viability, and motility (wound healing assay). Cell-derived xenograft models were established in mice. FFPE tumour samples were assessed by IHC. In vitro experiments indicated a positive correlation between half-maximal inhibitory concentration (IC50) for drugs in clinical practice, and MT2A mRNA level. This reinforced our previously reported correlation between MT2A mRNA level in tumour samples at diagnosis and overall survival in patients with osteosarcoma. In addition, MT2A/MT2 silencing using shRNA strategy led to a marked reduction of IC50 values and to enhanced cytotoxic effect of chemotherapy on primary tumour. Our results show that MT2A level could be used as a predictive biomarker of resistance to chemotherapy, and provide with preclinical rational for MT2A targeting as a therapeutic strategy for enhancing anti-tumour treatment of innate chemo-resistant osteosarcoma cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Metalotioneína/metabolismo , Terapia Molecular Dirigida , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Animales , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/secundario , Metalotioneína/genética , Ratones , Osteosarcoma/genética , Osteosarcoma/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA