Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 38(3): 952-967, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33031537

RESUMEN

Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an "orphan" P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.


Asunto(s)
Evolución Molecular , Methylococcus capsulatus/genética , Esterol 14-Desmetilasa/genética , Animales , Humanos , Methylococcus capsulatus/enzimología , Conformación Proteica , Esterol 14-Desmetilasa/química
2.
Proc Natl Acad Sci U S A ; 116(25): 12343-12352, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31167942

RESUMEN

Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Familia de Multigenes , Virus/enzimología , Sistema Enzimático del Citocromo P-450/genética
3.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 155-165, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28694077

RESUMEN

Limited knowledge of the molecular evolution of deep-sea fish proteomes so far suggests that a few widespread residue substitutions in cytosolic proteins binding hydrophilic ligands contribute to resistance to the effects of high hydrostatic pressure (HP). Structure-function studies with additional protein systems, including membrane bound proteins, are essential to provide a more general picture of adaptation in these extremophiles. We explored molecular features of HP adaptation in proteins binding hydrophobic ligands, either in lipid bilayers (cytochrome P450 1A - CYP1A) or in the cytosol (the aryl hydrocarbon receptor - AHR), and their partners P450 oxidoreductase (POR) and AHR nuclear translocator (ARNT), respectively. Cloning studies identified the full-length coding sequence of AHR, CYP1A and POR, and a partial sequence of ARNT from Coryphaenoides armatus, an abyssal gadiform fish thriving down to 5000m depth. Inferred protein sequences were aligned with many non-deep-sea homologs to identify unique amino acid substitutions of possible relevance in HP adaptation. Positionally unique substitutions of various physicochemical properties were found in all four proteins, usually at sites of strong-to-absolute residue conservation. Some were in domains deemed important for protein-protein interaction or ligand binding. In addition, some involved removal or addition of beta-branched residues; local modifications of beta-branched residue patterns could be important to HP adaptation. In silico predictions further suggested that some unique substitutions might substantially modulate the flexibility of the polypeptide segment in which they are found. Repetitive motifs unique to the abyssal fish AHR were predicted to be rich in glycosylation sites, suggesting that post-translational changes could be involved in adaptation as well. Recombinant CYP1A and AHR showed functional properties (spectral characteristics, catalytic activity and ligand binding) that demonstrate proper folding at 1atm, indicating that they could be used as deep-sea fish protein models to further evaluate protein function under pressure. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone".


Asunto(s)
Adaptación Fisiológica , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Sistema Enzimático del Citocromo P-450/química , Proteínas de Peces/química , Gadiformes/metabolismo , Receptores de Hidrocarburo de Aril/química , Secuencia de Aminoácidos , Anfibios , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Sitios de Unión , Aves , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Gadiformes/genética , Expresión Génica , Presión Hidrostática , Mamíferos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reptiles , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
Biochim Biophys Acta ; 1850(11): 2340-52, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26231923

RESUMEN

BACKGROUND: Zebrafish express five cytochrome P450 1 genes: CYP1A, CYP1B1, CYP1C1, CYP1C2, inducible by aryl hydrocarbon receptor agonists, and CYP1D1, a constitutively expressed CYP1A-like gene. We examined substrate selectivity of CYP1s expressed in yeast. METHODS: CYP1s were expressed in W(R) yeast, engineered to over-express P450 reductase, via pYES/DEST52 and via pYeDP60. Microsomal fractions from transformed yeast were examined for activity with fluorogenic substrates, benzo[a]pyrene and testosterone. Modeling and docking approaches were used to further evaluate sites of oxidation on benzo[a]pyrene and testosterone. RESULTS: CYP1s expressed in yeast dealkylated ethoxy-, methoxy-, pentoxy- and benzoxy-resorufin (EROD, MROD, PROD, BROD). CYP1A and CYP1C2 had the highest rates of EROD activity, while PROD and BROD activities were low for all five CYP1s. The relative rates of resorufin dealkylation by CYP1C1, CYP1C2 and CYP1D1 expressed via pYeDP60 were highly similar to relative rates obtained with pYES/DEST52-expressed enzymes. CYP1C1 and CYP1C2 dealkylated substituted coumarins and ethoxy-fluorescein-ethylester, while CYP1D1 did not. The CYP1Cs and CYP1D1 co-expressed with epoxide hydrolase oxidized BaP with different rates and product profiles, and all three produced BaP-7,8,9,10-tetrol. The CYP1Cs but not CYP1D1 metabolized testosterone to 6ß-OH-testosterone. However, CYP1D1 formed an unidentified testosterone metabolite better than the CYP1Cs. Testosterone and BaP docked to CYP homology models with poses consistent with differing product profiles. CONCLUSIONS: Yeast-expressed zebrafish CYP1s will be useful in determining further functionality with endogenous and xenobiotic compounds. GENERAL SIGNIFICANCE: Determining the roles of zebrafish CYP1s in physiology and toxicology depends on knowing the substrate selectivity of these enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450/fisiología , Saccharomyces cerevisiae/genética , Pez Cebra/metabolismo , Animales , Benzo(a)pireno/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Especificidad por Sustrato , Testosterona/metabolismo
5.
Mol Phylogenet Evol ; 94(Pt B): 676-687, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26432395

RESUMEN

Biosynthesis of steroid hormones in vertebrates involves three cytochrome P450 hydroxylases, CYP11A1, CYP17A1 and CYP19A1, which catalyze sequential steps in steroidogenesis. These enzymes are conserved in the vertebrates, but their origin and existence in other chordate subphyla (Tunicata and Cephalochordata) have not been clearly established. In this study, selected protein sequences of CYP11A1, CYP17A1 and CYP19A1 were compiled and analyzed using multiple sequence alignment and phylogenetic analysis. Our analyses show that cephalochordates have sequences orthologous to vertebrate CYP11A1, CYP17A1 or CYP19A1, and that echinoderms and hemichordates possess CYP11-like but not CYP19 genes. While the cephalochordate sequences have low identity with the vertebrate sequences, reflecting evolutionary distance, the data show apparent origin of CYP11 prior to the evolution of CYP19 and possibly CYP17, thus indicating a sequential origin of these functionally related steroidogenic CYPs. Co-occurrence of the three CYPs in early chordates suggests that the three genes may have coevolved thereafter, and that functional conservation should be reflected in functionally important residues in the proteins. CYP19A1 has the largest number of conserved residues while CYP11A1 sequences are less conserved. Structural analyses of human CYP11A1, CYP17A1 and CYP19A1 show that critical substrate binding site residues are highly conserved in each enzyme family. The results emphasize that the steroidogenic pathways producing glucocorticoids and reproductive steroids are several hundred million years old and that the catalytic structural elements of the enzymes have been conserved over the same period of time. Analysis of these elements may help to identify when precursor functions linked to these enzymes first arose.


Asunto(s)
Evolución Biológica , Cordados/genética , Hormonas Esteroides Gonadales/biosíntesis , Filogenia , Esteroide Hidroxilasas/química , Esteroide Hidroxilasas/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Humanos , Funciones de Verosimilitud
6.
Toxicol Appl Pharmacol ; 296: 73-84, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26853319

RESUMEN

Cytochrome P450 (CYP) enzymes for which there is no functional information are considered "orphan" CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to "deorphanization", that is, identifying CYP20A1 functions and its roles in health and disease.


Asunto(s)
Clonación Molecular/métodos , Sistema Enzimático del Citocromo P-450/genética , Agitación Psicomotora/enzimología , Agitación Psicomotora/genética , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Pollos , Clonación Molecular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/deficiencia , Técnicas de Silenciamiento del Gen/métodos , Humanos , Datos de Secuencia Molecular , Ratas , Xenobióticos/toxicidad , Xenopus , Pez Cebra , Proteínas de Pez Cebra/deficiencia
7.
Biochim Biophys Acta ; 1840(6): 1825-36, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24361620

RESUMEN

BACKGROUND: Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes. METHODS: PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC-MS. RESULTS: Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26µM for ketoconazole and 0.64µM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51s. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s. CONCLUSIONS: Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. GENERAL SIGNIFICANCE: The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications.


Asunto(s)
Proteínas Recombinantes/química , Esterol 14-Desmetilasa/química , Animales , Femenino , Humanos , Ligandos , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Esterol 14-Desmetilasa/fisiología , Esteroles/biosíntesis , Pez Cebra
8.
Toxicol Appl Pharmacol ; 284(2): 163-79, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25711857

RESUMEN

Wnt/ß-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between ß-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the ß-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3',4,4',5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with ß-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of ß-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a ß-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of ß-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of ß-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating ß-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Receptores de Hidrocarburo de Aril/agonistas , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Benzazepinas/toxicidad , Carbazoles/toxicidad , Embrión no Mamífero/metabolismo , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Indoles/toxicidad , Bifenilos Policlorados/toxicidad , Pez Cebra , Proteínas de Pez Cebra/metabolismo , beta Catenina/antagonistas & inhibidores
9.
Toxicol Appl Pharmacol ; 284(1): 54-64, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25680588

RESUMEN

BACKGROUND: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. OBJECTIVES: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. RESULTS: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. CONCLUSIONS: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation.


Asunto(s)
Contaminantes Ambientales/toxicidad , Receptores de Esteroides/agonistas , Ursidae/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Clonación Molecular , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/química , Evolución Molecular , Genes Reporteros , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Receptor X de Pregnano , Conformación Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transducción de Señal/efectos de los fármacos , Especificidad de la Especie , Relación Estructura-Actividad , Transfección , Ursidae/genética
10.
Anal Biochem ; 465: 70-2, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25004462

RESUMEN

In the course of detecting nuclear transcription factors by electrophoretic mobility shift assay using digoxigenin (DIG)-labeled probes, we encountered a problem with a considerable nonspecific shift band in negative control lanes from which protein extracts were omitted. This nonspecific shift band can interfere with the detection of the desired target protein. Purification of the DIG-labeled probes by removing unincorporated DIG-labeled nucleotides did not resolve the problem. However, the introduction of an additional step of heating at 95 °C for 5 min and subsequent reannealing after DIG-labeled probe synthesis eliminated these nonspecific shift bands and allowed accurate analysis of the target protein.


Asunto(s)
ADN/química , Digoxigenina/química , Ensayo de Cambio de Movilidad Electroforética/métodos , FN-kappa B/química , Elementos de Respuesta , Humanos
11.
Toxicol Appl Pharmacol ; 272(1): 172-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23726801

RESUMEN

The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática/efectos de los fármacos , Fenobarbital/farmacología , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Pez Cebra/fisiología , Animales , Evolución Biológica , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Modelos Moleculares , Especificidad de Órganos , Carbonitrilo de Pregnenolona/farmacología , Piridinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Xenobióticos/toxicidad
12.
J Inorg Biochem ; 245: 112241, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209461

RESUMEN

Cytochromes P450 (CYP), enzymes involved in the metabolism of endogenous and xenobiotic substrates, provide an excellent model system to study how membrane proteins with unique functions have catalytically adapted through evolution. Molecular adaptation of deep-sea proteins to high hydrostatic pressure remains poorly understood. Herein, we have characterized recombinant cytochrome P450 sterol 14α-demethylase (CYP51), an essential enzyme of cholesterol biosynthesis, from an abyssal fish species, Coryphaenoides armatus. C. armatus CYP51 was heterologously expressed in Escherichia coli following N-terminal truncation and purified to homogeneity. Recombinant C. armatus CYP51 bound its sterol substrate lanosterol giving a Type I binding spectra (KD 15 µM) and catalyzed lanosterol 14α-demethylation turnover at 5.8 nmol/min/nmol P450. C. armatus CYP51 also bound the azole antifungals ketoconazole (KD 0.12 µM) and propiconazole (KD 0.54 µM) as determined by Type II absorbance spectra. Comparison of C. armatus CYP51 primary sequence and modeled structures with other CYP51s identified amino acid substitutions that may confer an ability to function under pressures of the deep sea and revealed heretofore undescribed internal cavities in human and other non-deep sea CYP51s. The functional significance of these cavities is not known. PROLOGUE: This paper is dedicated in memory of Michael Waterman and Tsuneo Omura, who as good friends and colleagues enriched our lives. They continue to inspire us.


Asunto(s)
Antifúngicos , Lanosterol , Animales , Humanos , Lanosterol/química , Esterol 14-Desmetilasa/química , Antifúngicos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Esteroles , Peces
13.
Ann Glob Health ; 89(1): 23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969097

RESUMEN

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbonmetric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.


Asunto(s)
Enfermedades Cardiovasculares , Disruptores Endocrinos , Retardadores de Llama , Gases de Efecto Invernadero , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Estados Unidos , Niño , Animales , Humanos , Masculino , Femenino , Preescolar , Plásticos/toxicidad , Plásticos/química , Ecosistema , Mónaco , Microplásticos , Contaminantes Orgánicos Persistentes , Disruptores Endocrinos/toxicidad , Carbón Mineral
15.
Toxicol Appl Pharmacol ; 265(2): 166-74, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23036320

RESUMEN

The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on ß-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.


Asunto(s)
Sacos Aéreos/efectos de los fármacos , Ciclooxigenasa 2/biosíntesis , Citocromo P-450 CYP1A1/biosíntesis , Antagonistas de Estrógenos/toxicidad , Bifenilos Policlorados/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas de Pez Cebra/metabolismo , Sacos Aéreos/embriología , Sacos Aéreos/enzimología , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Femenino , Histocitoquímica , Masculino , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hidrocarburo de Aril/agonistas , Pez Cebra , Proteínas de Pez Cebra/agonistas , beta Catenina/genética , beta Catenina/metabolismo
16.
Environ Sci Technol ; 46(18): 10310-6, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22900608

RESUMEN

While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 µM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.


Asunto(s)
Gadiformes/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Metilcolantreno/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Citocromo P-450 CYP1A1/genética , Monitoreo del Ambiente , Gadiformes/genética , Técnicas de Preparación Histocitológica , Presión Hidrostática , Noruega , Activación Transcripcional/efectos de los fármacos
17.
J Toxicol Environ Health A ; 75(16-17): 1023-34, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22852852

RESUMEN

South American cyprinodontiform fish are potential candidates to be used as model biomarker species of exposure in environmental toxicology. The aim of this study was to identify molecular and biochemical biomarkers of pollution using Poecilia vivipara (Poecilidae) and Jenynsia multidentata (Anablepidae). Partial nucleotide sequences for cytochrome P-450 1A (CYP1A), a classical biomarker of exposure to organic contaminants in fish, were identified in P. vivipara and J. multidentata (approximately 650 nucleotides) using degenerated primers and polymerase chain reaction (PCR). These sequences shared approximately 90% identity in the predicted amino acid sequence with the corresponding CYP1A region of Fundulus heteroclitus. Real-time quantitative PCR (RT-qPCR) analysis confirmed that CYP1A transcription was markedly induced in the liver and gills of J. multidentata (approximately185-fold and 20-fold, respectively) and P. vivipara (122-fold and 739-fold, respectively) 24 h after exposure to 1 µM synthetic CYP1A inducer ß-naphthoflavone (BNF). At 24 h after injection with 1 µg/g environmental carcinogenic contaminant benzo[a]pyrene (BaP), a decreased total antioxidant capacity against peroxyl radicals was observed both in liver of J. multidentata and gills of P. vivipara. BaP injection in both fish did not produce changes in lipid peroxide (thiobarbituric acid-reactive substances, TBARS) levels, suggesting an absence of an oxidative stress condition. The newly identified CYP1A may thus serve as general biomarker of exposure to organic contaminant in future studies using P. vivipara and J. multidentata. Data also indicate the importance of species-specific differences in biomarker responses in these South American cyprinodontiform fish, suggesting distinct resistance/susceptibility properties to polycyclic aromatic hydrocarbons.


Asunto(s)
Ciprinodontiformes/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Benzo(a)pireno/toxicidad , Biomarcadores , Ciprinodontiformes/clasificación , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Branquias/enzimología , Branquias/metabolismo , Hígado/enzimología , Hígado/metabolismo , Masculino , América del Sur , Especificidad de la Especie , Transcripción Genética , beta-naftoflavona/toxicidad
18.
Biomolecules ; 12(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009001

RESUMEN

Flavodoxins are small electron transport proteins that are involved in a myriad of photosynthetic and non-photosynthetic metabolic pathways in Bacteria (including cyanobacteria), Archaea and some algae. The sequenced genome of 0305φ8-36, a large bacteriophage that infects the soil bacterium Bacillus thuringiensis, was predicted to encode a putative flavodoxin redox protein. Here we confirm that 0305φ8-36 phage encodes a FMN-containing flavodoxin polypeptide and we report the expression, purification and enzymatic characterization of the recombinant protein. Purified 0305φ8-36 flavodoxin has near-identical spectral properties to control, purified Escherichia coli flavodoxin. Using in vitro assays we show that 0305φ8-36 flavodoxin can be reconstituted with E. coli flavodoxin reductase and support regio- and stereospecific cytochrome P450 CYP170A1 allyl-oxidation of epi-isozizaene to the sesquiterpene antibiotic product albaflavenone, found in the soil bacterium Streptomyces coelicolor. In vivo, 0305φ8-36 flavodoxin is predicted to mediate the 2-electron reduction of the ß subunit of phage-encoded ribonucleotide reductase to catalyse the conversion of ribonucleotides to deoxyribonucleotides during viral replication. Our results demonstrate that this phage flavodoxin has the potential to manipulate and drive bacterial P450 cellular metabolism, which may affect both the host biological fitness and the communal microbiome. Such a scenario may also be applicable in other viral-host symbiotic/parasitic relationships.


Asunto(s)
Flavodoxina , Streptomyces coelicolor , Sistema Enzimático del Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/genética , Flavodoxina/metabolismo , Oxidación-Reducción , Suelo , Streptomyces coelicolor/metabolismo
19.
Elife ; 112022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801640

RESUMEN

Viruses generally are defined as lacking the fundamental properties of living organisms in that they do not harbor an energy metabolism system or protein synthesis machinery. However, the discovery of giant viruses of amoeba has fundamentally challenged this view because of their exceptional genome properties, particle sizes and encoding of the enzyme machinery for some steps of protein synthesis. Although giant viruses are not able to replicate autonomously and still require a host for their multiplication, numerous metabolic genes involved in energy production have been recently detected in giant virus genomes from many environments. These findings have further blurred the boundaries that separate viruses and living organisms. Herein, we summarize information concerning genes and proteins involved in cellular metabolic pathways and their orthologues that have, surprisingly, been discovered in giant viruses. The remarkable diversity of metabolic genes described in giant viruses include genes encoding enzymes involved in glycolysis, gluconeogenesis, tricarboxylic acid cycle, photosynthesis, and ß-oxidation. These viral genes are thought to have been acquired from diverse biological sources through lateral gene transfer early in the evolution of Nucleo-Cytoplasmic Large DNA Viruses, or in some cases more recently. It was assumed that viruses are capable of hijacking host metabolic networks. But the giant virus auxiliary metabolic genes also may represent another form of host metabolism manipulation, by expanding the catalytic capabilities of the host cells especially in harsh environments, providing the infected host cells with a selective evolutionary advantage compared to non-infected cells and hence favoring the viral replication. However, the mechanism of these genes' functionality remains unclear to date.


Asunto(s)
Amoeba , Virus Gigantes , Virus , Virus ADN/genética , Genoma Viral , Virus Gigantes/genética , Filogenia , Virus/genética
20.
Toxicol Appl Pharmacol ; 250(2): 170-83, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20965207

RESUMEN

The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), ß-naphthoflavone (ßNF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). ßNF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and ßNF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 µM PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 µM PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.


Asunto(s)
Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Indoles/toxicidad , Bifenilos Policlorados/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , beta-naftoflavona/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/genética , Relación Dosis-Respuesta a Droga , Inducción Enzimática/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genoma , Carmin de Índigo , Indoles/administración & dosificación , Masculino , Modelos Animales , Bifenilos Policlorados/administración & dosificación , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Xenopus , beta-naftoflavona/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA