Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Cell ; 33(2): 358-380, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33793852

RESUMEN

Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Luz , ARN Bacteriano/metabolismo , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Modelos Biológicos , Mutación/genética , Operón/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Synechocystis/genética
2.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38469716

RESUMEN

RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.


Asunto(s)
Endorribonucleasas , Synechocystis , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN , Ribonucleasas , Escherichia coli/genética , Escherichia coli/metabolismo , Synechocystis/genética , ARN de Transferencia
3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33509926

RESUMEN

Phycobilisomes are the major pigment-protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin ß-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ficobilisomas/metabolismo , Synechocystis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Nitrógeno/deficiencia , Nitrógeno/farmacología , Fenotipo , Fotosíntesis , Filogenia , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Synechocystis/efectos de los fármacos , Synechocystis/genética , Transcriptoma/genética
4.
Nucleic Acids Res ; 49(22): 13075-13091, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871439

RESUMEN

Ribonucleases are crucial enzymes in RNA metabolism and post-transcriptional regulatory processes in bacteria. Cyanobacteria encode the two essential ribonucleases RNase E and RNase J. Cyanobacterial RNase E is shorter than homologues in other groups of bacteria and lacks both the chloroplast-specific N-terminal extension as well as the C-terminal domain typical for RNase E of enterobacteria. In order to investigate the function of RNase E in the model cyanobacterium Synechocystis sp. PCC 6803, we engineered a temperature-sensitive RNase E mutant by introducing two site-specific mutations, I65F and the spontaneously occurred V94A. This enabled us to perform RNA-seq after the transient inactivation of RNase E by a temperature shift (TIER-seq) and to map 1472 RNase-E-dependent cleavage sites. We inferred a dominating cleavage signature consisting of an adenine at the -3 and a uridine at the +2 position within a single-stranded segment of the RNA. The data identified mRNAs likely regulated jointly by RNase E and an sRNA and potential 3' end-derived sRNAs. Our findings substantiate the pivotal role of RNase E in post-transcriptional regulation and suggest the redundant or concerted action of RNase E and RNase J in cyanobacteria.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/genética , Endorribonucleasas/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Cianobacterias/enzimología , Endorribonucleasas/metabolismo , Hidrólisis , Mutación Puntual , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , RNA-Seq/métodos , Homología de Secuencia de Aminoácido , Espectrofotometría/métodos , Especificidad por Sustrato , Synechocystis/enzimología , Synechocystis/genética
5.
J Biol Chem ; 295(19): 6372-6386, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32209657

RESUMEN

The arrangement of functionally-related genes in operons is a fundamental element of how genetic information is organized in prokaryotes. This organization ensures coordinated gene expression by co-transcription. Often, however, alternative genetic responses to specific stress conditions demand the discoordination of operon expression. During cold temperature stress, accumulation of the gene encoding the sole Asp-Glu-Ala-Asp (DEAD)-box RNA helicase in Synechocystis sp. PCC 6803, crhR (slr0083), increases 15-fold. Here, we show that crhR is expressed from a dicistronic operon with the methylthiotransferase rimO/miaB (slr0082) gene, followed by rapid processing of the operon transcript into two monocistronic mRNAs. This cleavage event is required for and results in destabilization of the rimO transcript. Results from secondary structure modeling and analysis of RNase E cleavage of the rimO-crhR transcript in vitro suggested that CrhR plays a role in enhancing the rate of the processing in an auto-regulatory manner. Moreover, two putative small RNAs are generated from additional processing, degradation, or both of the rimO transcript. These results suggest a role for the bacterial RNA helicase CrhR in RNase E-dependent mRNA processing in Synechocystis and expand the known range of organisms possessing small RNAs derived from processing of mRNA transcripts.


Asunto(s)
Operón/genética , ARN Helicasas/metabolismo , ARN no Traducido/metabolismo , Synechocystis/enzimología , Synechocystis/genética , Regiones no Traducidas 5'/genética , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica
6.
J Exp Bot ; 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499142

RESUMEN

RNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts. Cyanobacteria are the direct evolutionary ancestors of plant chloroplasts. The cyanobacterium Synechocystis 6803 encodes a single DEAD-box RNA helicase, CrhR, that is induced by a range of abiotic stresses, including low temperature. Though the ΔcrhR mutant exhibits a severe cold-sensitive phenotype, the physiological function(s) performed by CrhR have not been described. To identify transcripts interacting with CrhR, we performed RNA co-immunoprecipitation with extracts from a Synechocystis crhR deletion mutant expressing the FLAG-tagged native CrhR or a K57A mutated version with an anticipated enhanced RNA binding. The composition of the interactome was strikingly biased towards photosynthesis-associated and redox-controlled transcripts. A transcript highly enriched in all experiments was the crhR mRNA, suggesting an auto-regulatory molecular mechanism. The identified interactome explains the described physiological role of CrhR in response to the redox poise of the photosynthetic electron transport chain and characterizes CrhR as an enzyme with a diverse range of transcripts as molecular targets.

7.
BMC Microbiol ; 16(1): 285, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894276

RESUMEN

BACKGROUND: Despite their versatile functions in multimeric protein complexes, in the modification of enzymatic activities, intercellular communication or regulatory processes, proteins shorter than 80 amino acids (µ-proteins) are a systematically underestimated class of gene products in bacteria. Photosynthetic cyanobacteria provide a paradigm for small protein functions due to extensive work on the photosynthetic apparatus that led to the functional characterization of 19 small proteins of less than 50 amino acids. In analogy, previously unstudied small ORFs with similar degrees of conservation might encode small proteins of high relevance also in other functional contexts. RESULTS: Here we used comparative transcriptomic information available for two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechocystis sp. PCC 6714 for the prediction of small ORFs. We found 293 transcriptional units containing candidate small ORFs ≤80 codons in Synechocystis sp. PCC 6803, also including the known mRNAs encoding small proteins of the photosynthetic apparatus. From these transcriptional units, 146 are shared between the two strains, 42 are shared with the higher plant Arabidopsis thaliana and 25 with E. coli. To verify the existence of the respective µ-proteins in vivo, we selected five genes as examples to which a FLAG tag sequence was added and re-introduced them into Synechocystis sp. PCC 6803. These were the previously annotated gene ssr1169, two newly defined genes norf1 and norf4, as well as nsiR6 (nitrogen stress-induced RNA 6) and hliR1(high light-inducible RNA 1) , which originally were considered non-coding. Upon activation of expression via the Cu2+.responsive petE promoter or from the native promoters, all five proteins were detected in Western blot experiments. CONCLUSIONS: The distribution and conservation of these five genes as well as their regulation of expression and the physico-chemical properties of the encoded proteins underline the likely great bandwidth of small protein functions in bacteria and makes them attractive candidates for functional studies.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cianobacterias/metabolismo , Proteoma/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas Bacterianas/química , Secuencia de Bases , Cianobacterias/enzimología , Cianobacterias/genética , Escherichia coli/genética , Genes Bacterianos , Mutación , Nitrógeno/metabolismo , Sistemas de Lectura Abierta , Fotosíntesis , Regiones Promotoras Genéticas , ARN Bacteriano/genética , ARN Mensajero/genética , Alineación de Secuencia , Synechocystis/genética , Synechocystis/metabolismo , Transcripción Genética , Transcriptoma
8.
RNA Biol ; 11(5): 413-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24651049

RESUMEN

Anoxygenic and oxygenic bacteria directly convert solar energy into biomass using photosynthesis. The formation and composition of photosynthetic complexes has to be tightly controlled in response to environmental conditions, as exposure to sunlight can be harmful due to the generation of reactive oxygen species and the damaging effects of UV irradiation. Therefore, photosynthetic bacteria are exposed to a particular set of regulatory challenges in addition to those that also affect other bacteria, requiring sophisticated regulatory systems. Indeed, hundreds of potential regulatory RNAs have been identified in photosynthetic model bacteria as well as antisense RNAs (asRNAs) of up to several kb in length that protect certain mRNAs from degradation. The trans-acting small non-coding RNAs (sRNAs), PcrZ and PsrR1, control pigment and photosystem biogenesis in Rhodobacter sphaeroides and cyanobacteria, respectively. The asRNAs IsrR and As1_flv4 act as negative regulators and the asRNAs PsbA2R and PsbA3R as positive effectors of photosynthesis gene expression in Synechocystis 6803.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , Fotosíntesis/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Adaptación Biológica , Bacterias/clasificación , Cianobacterias/genética , Cianobacterias/metabolismo , Estrés Oxidativo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(5): 2124-9, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245330

RESUMEN

There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5' annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.


Asunto(s)
Synechocystis/genética , Transcripción Genética , Secuencia de Bases , Genes Bacterianos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Fotosíntesis , ARN no Traducido/genética , Homología de Secuencia de Ácido Nucleico , Synechocystis/fisiología
10.
Cell Rep ; 43(7): 114485, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996066

RESUMEN

How CRISPR-Cas systems defend bacteria and archaea against invading genetic elements is well understood, but less is known about their regulation. In the cyanobacterium Synechocystis sp. PCC 6803, the expression of one of the three different CRISPR-Cas systems responds to changes in environmental conditions. The cas operon promoter of this system is controlled by the light- and redox-responsive transcription factor RpaB binding to an HLR1 motif, resulting in transcriptional activation at low light intensities. However, the strong promoter that drives transcription of the cognate repeat-spacer array is not controlled by RpaB. Instead, the leader transcript is bound by the redox-sensitive RNA helicase CrhR. Crosslinking coupled with mass spectrometry analysis and site-directed mutagenesis revealed six residues involved in the CrhR-RNA interaction, with C371 being critically important. Thus, the expression of a type III-Dv CRISPR-Cas system is linked to the redox status of the photosynthetic cell at the transcriptional and post-transcriptional levels.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , ARN Helicasas DEAD-box , Synechocystis , Sistemas CRISPR-Cas/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Synechocystis/metabolismo , Synechocystis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Unión Proteica
11.
Plant Physiol ; 160(2): 1000-10, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22858634

RESUMEN

The D1 protein of photosystem II in the thylakoid membrane of photosynthetic organisms is encoded by psbA genes, which in cyanobacteria occur in the form of a small gene family. Light-dependent up-regulation of psbA gene expression is crucial to ensure the proper replacement of the D1 protein. To gain a high level of gene expression, psbA transcription can be enhanced by several orders of magnitude. Recent transcriptome analyses demonstrated a high number of cis-encoded antisense RNAs (asRNAs) in bacteria, but very little is known about their possible functions. Here, we show the presence of two cis-encoded asRNAs (PsbA2R and PsbA3R) of psbA2 and psbA3 from Synechocystis sp. PCC 6803. These asRNAs are located in the 5' untranslated region of psbA2 and psbA3 genes. Their expression becomes up-regulated by light and down-regulated by darkness, similar to their target mRNAs. In the PsbA2R-suppressing strain [PsbA2R(-)], the amount of psbA2 mRNA was only about 50% compared with the control strain. Likewise, we identified a 15% lowered activity of photosystem II and a reduced amount of the D1 protein in PsbA2R(-) compared with the control strain. The function of PsbA2R in the stabilization of psbA2 mRNA was shown from in vitro RNase E assay when the AU box and the ribosome-binding site in the 5' untranslated region of psbA2 mRNA were both covered by PsbA2R. These results add another layer of complexity to the mechanisms that contribute to psbA gene expression and show PsbA2R as a positively acting factor to achieve a maximum level of D1 synthesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Complejo de Proteína del Fotosistema II/metabolismo , ARN sin Sentido/genética , Synechocystis/metabolismo , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Oscuridad , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Luz , Datos de Secuencia Molecular , Mutagénesis , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Estabilidad del ARN , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Synechocystis/genética , Synechocystis/crecimiento & desarrollo , Synechocystis/efectos de la radiación , Tilacoides/metabolismo , Transcripción Genética , Regulación hacia Arriba
12.
Nucleic Acids Res ; 39(11): 4890-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21325266

RESUMEN

The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg(2+), pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA-mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression.


Asunto(s)
Endorribonucleasas/metabolismo , Prochlorococcus/enzimología , Prochlorococcus/genética , Estabilidad del ARN , ARN sin Sentido/metabolismo , ARN Mensajero/metabolismo , Bacteriófagos/fisiología , Endorribonucleasas/química , Endorribonucleasas/aislamiento & purificación , Genes de ARNr , Islas Genómicas , Prochlorococcus/virología , ARN Bicatenario/metabolismo , Transcripción Genética
13.
Front Microbiol ; 14: 1112307, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876071

RESUMEN

Synthetic biology approaches toward the development of cyanobacterial producer strains require the availability of appropriate sets of plasmid vectors. A factor for the industrial usefulness of such strains is their robustness against pathogens, such as bacteriophages infecting cyanobacteria. Therefore, it is of great interest to understand the native plasmid replication systems and the CRISPR-Cas based defense mechanisms already present in cyanobacteria. In the model cyanobacterium Synechocystis sp. PCC 6803, four large and three smaller plasmids exist. The ~100 kb plasmid pSYSA is specialized in defense functions by encoding all three CRISPR-Cas systems and several toxin-antitoxin systems. The expression of genes located on pSYSA depends on the plasmid copy number in the cell. The pSYSA copy number is positively correlated with the expression level of the endoribonuclease E. As molecular basis for this correlation we identified the RNase E-mediated cleavage within the pSYSA-encoded ssr7036 transcript. Together with a cis-encoded abundant antisense RNA (asRNA1), this mechanism resembles the control of ColE1-type plasmid replication by two overlapping RNAs, RNA I and II. In the ColE1 mechanism, two non-coding RNAs interact, supported by the small protein Rop, which is encoded separately. In contrast, in pSYSA the similar-sized protein Ssr7036 is encoded within one of the interacting RNAs and it is this mRNA that likely primes pSYSA replication. Essential for plasmid replication is furthermore the downstream encoded protein Slr7037 featuring primase and helicase domains. Deletion of slr7037 led to the integration of pSYSA into the chromosome or the other large plasmid pSYSX. Moreover, the presence of slr7037 was required for successful replication of a pSYSA-derived vector in another model cyanobacterium, Synechococcus elongatus PCC 7942. Therefore, we annotated the protein encoded by slr7037 as Cyanobacterial Rep protein A1 (CyRepA1). Our findings open new perspectives on the development of shuttle vectors for genetic engineering of cyanobacteria and of modulating the activity of the entire CRISPR-Cas apparatus in Synechocystis sp. PCC 6803.

14.
mLife ; 2(1): 43-57, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38818332

RESUMEN

Endoribonucleases govern the maturation and degradation of RNA and are indispensable in the posttranscriptional regulation of gene expression. A key endoribonuclease in Gram-negative bacteria is RNase E. To ensure an appropriate supply of RNase E, some bacteria, such as Escherichia coli, feedback-regulate RNase E expression via the rne 5'-untranslated region (5' UTR) in cis. However, the mechanisms involved in the control of RNase E in other bacteria largely remain unknown. Cyanobacteria rely on solar light as an energy source for photosynthesis, despite the inherent ultraviolet (UV) irradiation. In this study, we first investigated globally the changes in gene expression in the cyanobacterium Synechocystis sp. PCC 6803 after a brief exposure to UV. Among the 407 responding genes 2 h after UV exposure was a prominent upregulation of rne mRNA level. Moreover, the enzymatic activity of RNase E rapidly increased as well, although the protein stability decreased. This unique response was underpinned by the increased accumulation of full-length rne mRNA caused by the stabilization of its 5' UTR and suppression of premature transcriptional termination, but not by an increased transcription rate. Mapping of RNA 3' ends and in vitro cleavage assays revealed that RNase E cleaves within a stretch of six consecutive uridine residues within the rne 5' UTR, indicating autoregulation. These observations suggest that RNase E in cyanobacteria contributes to reshaping the transcriptome during the UV stress response and that its required activity level is secured at the RNA level despite the enhanced turnover of the protein.

15.
Microorganisms ; 10(11)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36422315

RESUMEN

The marine picocyanobacterium Prochlorococcus contributes significantly to global primary production, and its abundance and diversity is shaped in part by viral infection. Here, we identified a cyanophage-encoded MarR-type transcription factor that induces the gene expression of host Prochlorococcus MED4 endoribonuclease (RNase) E during phage infection. The increase in rne transcript levels relies on the phage (p)MarR-mediated activation of an alternative promoter that gives rise to a truncated yet enzymatically fully functional RNase E isoform. In this study, we demonstrate that pMarR binds to an atypical activator site downstream of the transcriptional start site and that binding is enhanced in the presence of Ca2+ ions. Furthermore, we show that dimeric pMarR interacts with the α subunit of RNA polymerase, and we identified amino acid residues S66, R67, and G106, which are important for Ca2+ binding, DNA binding, and dimerization of pMarR, respectively.

16.
Bioinformatics ; 26(1): 1-5, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19850757

RESUMEN

MOTIVATION: Prochlorococcus possesses the smallest genome of all sequenced photoautotrophs. Although the number of regulatory proteins in the genome is very small, the relative number of small regulatory RNAs is comparable with that of other bacteria. The compact genome size of Prochlorococcus offers an ideal system to search for targets of small RNAs (sRNAs) and to refine existing target prediction algorithms. RESULTS: Target predictions for the cyanobacterial sRNA Yfr1 were carried out with INTARNA in Prochlorococcus MED4. The ultraconserved Yfr1 sequence motif was defined as the putative interaction seed. To study the impact of Yfr1 on its predicted mRNA targets, a reporter system based on green fluorescent protein (GFP) was applied. We show that Yfr1 inhibits the translation of two predicted targets. We used mutation analysis to confirm that Yfr1 directly regulates its targets by an antisense interaction sequestering the ribosome binding site, and to assess the importance of interaction site accessibility.


Asunto(s)
Marcación de Gen/métodos , Genoma Bacteriano/genética , Proteínas Fluorescentes Verdes/genética , Prochlorococcus/genética , ARN Bacteriano/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular
17.
PLoS Genet ; 4(8): e1000173, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18769676

RESUMEN

Prochlorococcus, an extremely small cyanobacterium that is very abundant in the world's oceans, has a very streamlined genome. On average, these cells have about 2,000 genes and very few regulatory proteins. The limited capability of regulation is thought to be a result of selection imposed by a relatively stable environment in combination with a very small genome. Furthermore, only ten non-coding RNAs (ncRNAs), which play crucial regulatory roles in all forms of life, have been described in Prochlorococcus. Most strains also lack the RNA chaperone Hfq, raising the question of how important this mode of regulation is for these cells. To explore this question, we examined the transcription of intergenic regions of Prochlorococcus MED4 cells subjected to a number of different stress conditions: changes in light qualities and quantities, phage infection, or phosphorus starvation. Analysis of Affymetrix microarray expression data from intergenic regions revealed 276 novel transcriptional units. Among these were 12 new ncRNAs, 24 antisense RNAs (asRNAs), as well as 113 short mRNAs. Two additional ncRNAs were identified by homology, and all 14 new ncRNAs were independently verified by Northern hybridization and 5'RACE. Unlike its reduced suite of regulatory proteins, the number of ncRNAs relative to genome size in Prochlorococcus is comparable to that found in other bacteria, suggesting that RNA regulators likely play a major role in regulation in this group. Moreover, the ncRNAs are concentrated in previously identified genomic islands, which carry genes of significance to the ecology of this organism, many of which are not of cyanobacterial origin. Expression profiles of some of these ncRNAs suggest involvement in light stress adaptation and/or the response to phage infection consistent with their location in the hypervariable genomic islands.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Prochlorococcus/genética , ARN Bacteriano/genética , ARN no Traducido/genética , ADN Intergénico/química , ADN Intergénico/genética , ADN Intergénico/metabolismo , Genoma Bacteriano , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Procesos Fototróficos , Prochlorococcus/química , Prochlorococcus/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN no Traducido/química , ARN no Traducido/metabolismo , Transcripción Genética
18.
Environ Microbiol ; 12(1): 83-94, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19735283

RESUMEN

The synthesis and accumulation of compatible solutes represent an essential part of the salt acclimation strategy of microorganisms. Glucosylglycerol is considered to be the typical compatible solute among marine cyanobacteria. However, genes that encode enzymes for the synthesis of glucosylglycerol were not detected in the genome sequences of marine picoplanktonic Prochlorococcus strains. Instead, we noticed the presence of genes that putatively encode for glucosylglycerate (GGA) synthesis among Prochlorococcus and most other closely related marine picocyanobacteria. Recombinant proteins from Prochlorococcus marinus SS120 and Synechococcus sp. PCC 7002 exhibited glucosyl-phosphoglycerate synthase (GpgS) activity, and GpgS is a key enzyme of GGA synthesis. GGA accumulation was found to be salt- as well as nitrogen-regulated in the coastal strain Synechococcus sp. PCC 7002. Moreover, GGA was also detected in all picoplanktonic Prochlorococcus and Synechococcus strains harbouring gpgS genes, especially under N-limiting conditions. These results suggest that marine picocyanobacteria acquired the capacity to synthesize the negatively charged compound GGA during their evolution. Our results establish GGA as the fifth most widespread compatible solute among cyanobacteria. Additionally, GGA appears to replace glutamate as an anion to counter monovalent cations in marine picocyanobacteria from N-poor environments.


Asunto(s)
Glucósidos/biosíntesis , Nitrógeno/metabolismo , Prochlorococcus/enzimología , Synechococcus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ácidos Glicéricos , Filogenia , Prochlorococcus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Análisis de Secuencia de ADN , Synechococcus/genética
19.
Nature ; 424(6952): 1042-7, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12917642

RESUMEN

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.


Asunto(s)
Evolución Biológica , Cianobacterias/clasificación , Cianobacterias/genética , Ambiente , Genoma Bacteriano , Adaptación Fisiológica/efectos de la radiación , Cianobacterias/efectos de la radiación , Genes Bacterianos/genética , Luz , Datos de Secuencia Molecular , Océanos y Mares , Filogenia
20.
PLoS Genet ; 3(12): e231, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18159947

RESUMEN

Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the "leaves of the tree," between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.


Asunto(s)
Evolución Biológica , Genoma Bacteriano , Prochlorococcus/genética , Cromosomas Bacterianos/genética , Ecosistema , Genes Bacterianos , Filogenia , Prochlorococcus/clasificación , Prochlorococcus/aislamiento & purificación , Prochlorococcus/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Especificidad de la Especie , Synechococcus/clasificación , Synechococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA