Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 21(8): 1213-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21406540

RESUMEN

The Collaborative Cross (CC) is a mouse recombinant inbred strain panel that is being developed as a resource for mammalian systems genetics. Here we describe an experiment that uses partially inbred CC lines to evaluate the genetic properties and utility of this emerging resource. Genome-wide analysis of the incipient strains reveals high genetic diversity, balanced allele frequencies, and dense, evenly distributed recombination sites-all ideal qualities for a systems genetics resource. We map discrete, complex, and biomolecular traits and contrast two quantitative trait locus (QTL) mapping approaches. Analysis based on inferred haplotypes improves power, reduces false discovery, and provides information to identify and prioritize candidate genes that is unique to multifounder crosses like the CC. The number of expression QTLs discovered here exceeds all previous efforts at eQTL mapping in mice, and we map local eQTL at 1-Mb resolution. We demonstrate that the genetic diversity of the CC, which derives from random mixing of eight founder strains, results in high phenotypic diversity and enhances our ability to map causative loci underlying complex disease-related traits.


Asunto(s)
Genoma , Sitios de Carácter Cuantitativo , Animales , Cruzamientos Genéticos , Femenino , Expresión Génica , Estudios de Asociación Genética , Haplotipos , Masculino , Ratones , Fenotipo
2.
BMC Genet ; 11: 98, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044349

RESUMEN

BACKGROUND: Transmission ratio distortion (TRD), defined as statistically significant deviation from expected 1:1 Mendelian ratios of allele inheritance, results in a reduction of the expected progeny of a given genotype. Since TRD is a common occurrence within interspecific crosses, a mouse interspecific backcross was used to genetically map regions showing TRD, and a developmental analysis was performed to identify the timing of allele loss. RESULTS: Three independent events of statistically significant deviation from the expected 50:50 Mendelian inheritance ratios were observed in an interspecific backcross between the Mus musculus A/J and the Mus spretus SPRET/EiJ inbred strains. At weaning M. musculus alleles are preferentially inherited on Chromosome (Chr) 7, while M. spretus alleles are preferentially inherited on Chrs 10 and 11. Furthermore, alleles on Chr 3 modify the TRD on Chr 11. All TRD loci detected at weaning were present in Mendelian ratios at mid-gestation and at birth. CONCLUSIONS: Given that Mendelian ratios of inheritance are observed for Chr 7, 10 and 11 during development and at birth, the underlying causes for the interspecific TRD events are the differential post-natal survival of pups with specific genotypes. These results are consistent with the TRD mechanism being deviation from Mendelian inheritance rather than meiotic drive or segregation distortion.


Asunto(s)
Mapeo Cromosómico , Hibridación Genética , Ratones/genética , Alelos , Animales , Femenino , Genotipo , Patrón de Herencia , Masculino , Ratones Endogámicos A , Repeticiones de Microsatélite , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA