Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7966): 790-798, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316665

RESUMEN

Psychedelics are a broad class of drugs defined by their ability to induce an altered state of consciousness1,2. These drugs have been used for millennia in both spiritual and medicinal contexts, and a number of recent clinical successes have spurred a renewed interest in developing psychedelic therapies3-9. Nevertheless, a unifying mechanism that can account for these shared phenomenological and therapeutic properties remains unknown. Here we demonstrate in mice that the ability to reopen the social reward learning critical period is a shared property across psychedelic drugs. Notably, the time course of critical period reopening is proportional to the duration of acute subjective effects reported in humans. Furthermore, the ability to reinstate social reward learning in adulthood is paralleled by metaplastic restoration of oxytocin-mediated long-term depression in the nucleus accumbens. Finally, identification of differentially expressed genes in the 'open state' versus the 'closed state' provides evidence that reorganization of the extracellular matrix is a common downstream mechanism underlying psychedelic drug-mediated critical period reopening. Together these results have important implications for the implementation of psychedelics in clinical practice, as well as the design of novel compounds for the treatment of neuropsychiatric disease.


Asunto(s)
Período Crítico Psicológico , Alucinógenos , Aprendizaje , Recompensa , Animales , Humanos , Ratones , Estado de Conciencia/efectos de los fármacos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Aprendizaje/efectos de los fármacos , Factores de Tiempo , Oxitocina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos
2.
Biostatistics ; 23(4): 1200-1217, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35358296

RESUMEN

Integrative analysis of multiple data sets has the potential of fully leveraging the vast amount of high throughput biological data being generated. In particular such analysis will be powerful in making inference from publicly available collections of genetic, transcriptomic and epigenetic data sets which are designed to study shared biological processes, but which vary in their target measurements, biological variation, unwanted noise, and batch variation. Thus, methods that enable the joint analysis of multiple data sets are needed to gain insights into shared biological processes that would otherwise be hidden by unwanted intra-data set variation. Here, we propose a method called two-stage linked component analysis (2s-LCA) to jointly decompose multiple biologically related experimental data sets with biological and technological relationships that can be structured into the decomposition. The consistency of the proposed method is established and its empirical performance is evaluated via simulation studies. We apply 2s-LCA to jointly analyze four data sets focused on human brain development and identify meaningful patterns of gene expression in human neurogenesis that have shared structure across these data sets.


Asunto(s)
Transcriptoma , Simulación por Computador , Humanos
3.
Proc Natl Acad Sci U S A ; 116(52): 26734-26744, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843893

RESUMEN

Autoimmune uveoretinitis is a significant cause of visual loss, and mouse models offer unique opportunities to study its disease mechanisms. Aire-/- mice fail to express self-antigens in the thymus, exhibit reduced central tolerance, and develop a spontaneous, chronic, and progressive uveoretinitis. Using single-cell RNA sequencing (scRNA-seq), we characterized wild-type and Aire-/- retinas to define, in a comprehensive and unbiased manner, the cell populations and gene expression patterns associated with disease. Based on scRNA-seq, immunostaining, and in situ hybridization, we infer that 1) the dominant effector response in Aire-/- retinas is Th1-driven, 2) a subset of monocytes convert to either a macrophage/microglia state or a dendritic cell state, 3) the development of tertiary lymphoid structures constitutes part of the Aire-/- retinal phenotype, 4) all major resident retinal cell types respond to interferon gamma (IFNG) by changing their patterns of gene expression, and 5) Muller glia up-regulate specific genes in response to IFN gamma and may act as antigen-presenting cells.

4.
Proc Natl Acad Sci U S A ; 116(18): 9103-9114, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30988181

RESUMEN

The mammalian CNS is capable of tolerating chronic hypoxia, but cell type-specific responses to this stress have not been systematically characterized. In the Norrin KO (NdpKO ) mouse, a model of familial exudative vitreoretinopathy (FEVR), developmental hypovascularization of the retina produces chronic hypoxia of inner nuclear-layer (INL) neurons and Muller glia. We used single-cell RNA sequencing, untargeted metabolomics, and metabolite labeling from 13C-glucose to compare WT and NdpKO retinas. In NdpKO retinas, we observe gene expression responses consistent with hypoxia in Muller glia and retinal neurons, and we find a metabolic shift that combines reduced flux through the TCA cycle with increased synthesis of serine, glycine, and glutathione. We also used single-cell RNA sequencing to compare the responses of individual cell types in NdpKO retinas with those in the hypoxic cerebral cortex of mice that were housed for 1 week in a reduced oxygen environment (7.5% oxygen). In the hypoxic cerebral cortex, glial transcriptome responses most closely resemble the response of Muller glia in the NdpKO retina. In both retina and brain, vascular endothelial cells activate a previously dormant tip cell gene expression program, which likely underlies the adaptive neoangiogenic response to chronic hypoxia. These analyses of retina and brain transcriptomes at single-cell resolution reveal both shared and cell type-specific changes in gene expression in response to chronic hypoxia, implying both shared and distinct cell type-specific physiologic responses.


Asunto(s)
Hipoxia/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Vitreorretinopatías Exudativas Familiares/genética , Vitreorretinopatías Exudativas Familiares/fisiopatología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Retina/metabolismo , Retina/fisiología , Neuronas Retinianas/metabolismo , Vasos Retinianos/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
5.
Trends Genet ; 34(10): 790-805, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30143323

RESUMEN

Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniques can reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncover new biological knowledge from diverse high-throughput omics data in applications ranging from pathway discovery to timecourse analysis. We review exemplary applications of MF for systems-level analyses. We discuss appropriate applications of these methods, their limitations, and focus on the analysis of results to facilitate optimal biological interpretation. The inference of biologically relevant features with MF enables discovery from high-throughput data beyond the limits of current biological knowledge - answering questions from high-dimensional data that we have not yet thought to ask.


Asunto(s)
Interpretación Estadística de Datos , Genómica/estadística & datos numéricos , Proteómica/estadística & datos numéricos , Algoritmos , Humanos , Biología de Sistemas/estadística & datos numéricos
6.
Bioinformatics ; 36(11): 3592-3593, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167521

RESUMEN

MOTIVATION: Dimension reduction techniques are widely used to interpret high-dimensional biological data. Features learned from these methods are used to discover both technical artifacts and novel biological phenomena. Such feature discovery is critically importent in analysis of large single-cell datasets, where lack of a ground truth limits validation and interpretation. Transfer learning (TL) can be used to relate the features learned from one source dataset to a new target dataset to perform biologically driven validation by evaluating their use in or association with additional sample annotations in that independent target dataset. RESULTS: We developed an R/Bioconductor package, projectR, to perform TL for analyses of genomics data via TL of clustering, correlation and factorization methods. We then demonstrate the utility TL for integrated data analysis with an example for spatial single-cell analysis. AVAILABILITY AND IMPLEMENTATION: projectR is available on Bioconductor and at https://github.com/genesofeve/projectR. CONTACT: gsteinobrien@jhmi.edu or ejfertig@jhmi.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica , Programas Informáticos , Análisis por Conglomerados , Aprendizaje Automático , Análisis de la Célula Individual
7.
Bioinformatics ; 34(11): 1859-1867, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29342249

RESUMEN

Motivation: Current bioinformatics methods to detect changes in gene isoform usage in distinct phenotypes compare the relative expected isoform usage in phenotypes. These statistics model differences in isoform usage in normal tissues, which have stable regulation of gene splicing. Pathological conditions, such as cancer, can have broken regulation of splicing that increases the heterogeneity of the expression of splice variants. Inferring events with such differential heterogeneity in gene isoform usage requires new statistical approaches. Results: We introduce Splice Expression Variability Analysis (SEVA) to model increased heterogeneity of splice variant usage between conditions (e.g. tumor and normal samples). SEVA uses a rank-based multivariate statistic that compares the variability of junction expression profiles within one condition to the variability within another. Simulated data show that SEVA is unique in modeling heterogeneity of gene isoform usage, and benchmark SEVA's performance against EBSeq, DiffSplice and rMATS that model differential isoform usage instead of heterogeneity. We confirm the accuracy of SEVA in identifying known splice variants in head and neck cancer and perform cross-study validation of novel splice variants. A novel comparison of splice variant heterogeneity between subtypes of head and neck cancer demonstrated unanticipated similarity between the heterogeneity of gene isoform usage in HPV-positive and HPV-negative subtypes and anticipated increased heterogeneity among HPV-negative samples with mutations in genes that regulate the splice variant machinery. These results show that SEVA accurately models differential heterogeneity of gene isoform usage from RNA-seq data. Availability and implementation: SEVA is implemented in the R/Bioconductor package GSReg. Contact: bahman@jhu.edu or favorov@sensi.org or ejfertig@jhmi.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Modelos Genéticos
8.
PLoS Comput Biol ; 14(4): e1006935, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-31002670

RESUMEN

Bioinformatics techniques to analyze time course bulk and single cell omics data are advancing. The absence of a known ground truth of the dynamics of molecular changes challenges benchmarking their performance on real data. Realistic simulated time-course datasets are essential to assess the performance of time course bioinformatics algorithms. We develop an R/Bioconductor package, CancerInSilico, to simulate bulk and single cell transcriptional data from a known ground truth obtained from mathematical models of cellular systems. This package contains a general R infrastructure for running cell-based models and simulating gene expression data based on the model states. We show how to use this package to simulate a gene expression data set and consequently benchmark analysis methods on this data set with a known ground truth. The package is freely available via Bioconductor: http://bioconductor.org/packages/CancerInSilico/.


Asunto(s)
Biología Computacional/métodos , Neoplasias/patología , Algoritmos , Simulación por Computador , Expresión Génica , Humanos
9.
Bioinformatics ; 33(12): 1892-1894, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174896

RESUMEN

SUMMARY: Non-negative Matrix Factorization (NMF) algorithms associate gene expression with biological processes (e.g. time-course dynamics or disease subtypes). Compared with univariate associations, the relative weights of NMF solutions can obscure biomarkers. Therefore, we developed a novel patternMarkers statistic to extract genes for biological validation and enhanced visualization of NMF results. Finding novel and unbiased gene markers with patternMarkers requires whole-genome data. Therefore, we also developed Genome-Wide CoGAPS Analysis in Parallel Sets (GWCoGAPS), the first robust whole genome Bayesian NMF using the sparse, MCMC algorithm, CoGAPS. Additionally, a manual version of the GWCoGAPS algorithm contains analytic and visualization tools including patternMatcher, a Shiny web application. The decomposition in the manual pipeline can be replaced with any NMF algorithm, for further generalization of the software. Using these tools, we find granular brain-region and cell-type specific signatures with corresponding biomarkers in GTEx data, illustrating GWCoGAPS and patternMarkers ascertainment of data-driven biomarkers from whole-genome data. AVAILABILITY AND IMPLEMENTATION: PatternMarkers & GWCoGAPS are in the CoGAPS Bioconductor package (3.5) under the GPL license. CONTACT: gsteinobrien@jhmi.edu or ccolantu@jhmi.edu or ejfertig@jhmi.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Programas Informáticos , Teorema de Bayes , Biomarcadores , Humanos , Análisis de Secuencia de ARN/métodos
10.
J Cell Biol ; 223(12)2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39320351

RESUMEN

Metastasis initiates when cancer cells escape from the primary tumor, which requires changes to intercellular junctions. Claudins are transmembrane proteins that form the tight junction, and their expression is reduced in aggressive breast tumors. However, claudins' roles during breast cancer metastasis remain unclear. We used gain- and loss-of-function genetics in organoids isolated from murine breast cancer models to establish that Cldn7 suppresses invasion and metastasis. Transcriptomic analysis revealed that Cldn7 knockdown induced smooth muscle actin (SMA)-related genes and a broader mesenchymal phenotype. We validated our results in human cell lines, fresh human tumor tissue, bulk RNA-seq, and public single-cell RNA-seq data. We consistently observed an inverse relationship between Cldn7 expression and expression of SMA-related genes. Furthermore, knockdown and overexpression of SMA-related genes demonstrated that they promote breast cancer invasion. Our data reveal that Cldn7 suppresses breast cancer invasion and metastasis through negative regulation of SMA-related and mesenchymal gene expression.


Asunto(s)
Actinas , Neoplasias de la Mama , Claudinas , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Humanos , Animales , Claudinas/metabolismo , Claudinas/genética , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Actinas/metabolismo , Actinas/genética , Ratones , Línea Celular Tumoral , Metástasis de la Neoplasia , Movimiento Celular/genética
11.
Nat Commun ; 15(1): 8043, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271675

RESUMEN

The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neocórtex , Células-Madre Neurales , Neurogénesis , Factores del Dominio POU , Animales , Femenino , Masculino , Ratones , Proliferación Celular , Hurones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Macaca , Neocórtex/metabolismo , Neocórtex/embriología , Neocórtex/citología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Factores del Dominio POU/metabolismo , Factores del Dominio POU/genética , Receptores Notch/metabolismo , Receptores Notch/genética
12.
Res Sq ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883722

RESUMEN

Loeys-Dietz syndrome (LDS) is an aneurysm disorder caused by mutations that decrease transforming growth factor-ß (TGF-ß) signaling. Although aneurysms develop throughout the arterial tree, the aortic root is a site of heightened risk. To identify molecular determinants of this vulnerability, we investigated the heterogeneity of vascular smooth muscle cells (VSMCs) in the aorta of Tgfbr1 M318R/+ LDS mice by single cell and spatial transcriptomics. Reduced expression of components of the extracellular matrix-receptor apparatus and upregulation of stress and inflammatory pathways were observed in all LDS VSMCs. However, regardless of genotype, a subset of Gata4-expressing VSMCs predominantly located in the aortic root intrinsically displayed a less differentiated, proinflammatory profile. A similar population was also identified among aortic VSMCs in a human scRNAseq dataset. Postnatal VSMC-specific Gata4 deletion reduced aortic root dilation in LDS mice, suggesting that this factor sensitizes the aortic root to the effects of impaired TGF-ß signaling.

13.
Nat Commun ; 15(1): 8416, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341835

RESUMEN

Hypoxia occurs in 90% of solid tumors and is associated with metastasis and mortality. Breast cancer cells that experience intratumoral hypoxia are 5x more likely to develop lung metastasis in animal models. Using spatial transcriptomics, we determine that hypoxic cells localized in more oxygenated tumor regions (termed 'post-hypoxic') retain expression of hypoxia-inducible and NF-kB-regulated genes, even in the oxygen-rich bloodstream. This cellular response is reproduced in vitro under chronic hypoxic conditions followed by reoxygenation. A subset of genes remains increased in reoxygenated cells. MUC1/MUC1-C is upregulated by both HIF-1α and NF-kB-p65 during chronic hypoxia. Abrogating MUC1 decreases the expression of superoxide dismutase enzymes, causing reactive oxygen species (ROS) production and cell death. A hypoxia-dependent genetic deletion of MUC1, or MUC1-C inhibition by GO-203, increases ROS levels in circulating tumor cells (CTCs), reducing the extent of metastasis. High MUC1 expression in tumor biopsies is associated with recurrence, and MUC1+ CTCs have lower ROS levels than MUC1- CTCs in patient-derived xenograft models. This study demonstrates that therapeutically targeting MUC1-C reduces hypoxia-driven metastasis.


Asunto(s)
Neoplasias de la Mama , Mucina-1 , Especies Reactivas de Oxígeno , Mucina-1/metabolismo , Mucina-1/genética , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Femenino , Línea Celular Tumoral , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Oxígeno/metabolismo , Factor de Transcripción ReIA/metabolismo , Metástasis de la Neoplasia , Hipoxia/metabolismo , Hipoxia de la Célula
14.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464021

RESUMEN

Vast quantities of multi-omic data have been produced to characterize the development and diversity of cell types in the cerebral cortex of humans and other mammals. To more fully harness the collective discovery potential of these data, we have assembled gene-level transcriptomic data from 188 published studies of neocortical development, including the transcriptomes of ~30 million single-cells, extensive spatial transcriptomic experiments and RNA sequencing of sorted cells and bulk tissues: nemoanalytics.org/landing/neocortex. Applying joint matrix decomposition (SJD) to mouse, macaque and human data in this collection, we defined transcriptome dynamics that are conserved across mammalian neurogenesis and which elucidate the evolution of outer, or basal, radial glial cells. Decomposition of adult human neocortical data identified layer-specific signatures in mature neurons and, in combination with transfer learning methods in NeMO Analytics, enabled the charting of their early developmental emergence and protracted maturation across years of postnatal life. Interrogation of data from cerebral organoids demonstrated that while broad molecular elements of in vivo development are recapitulated in vitro, many layer-specific transcriptomic programs in neuronal maturation are absent. We invite computational biologists and cell biologists without coding expertise to use NeMO Analytics in their research and to fuel it with emerging data (carlocolantuoni.org).

15.
Stem Cell Reports ; 19(9): 1336-1350, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151428

RESUMEN

Variability between human pluripotent stem cell (hPSC) lines remains a challenge and opportunity in biomedicine. In this study, hPSC lines from multiple donors were differentiated toward neuroectoderm and mesendoderm lineages. We revealed dynamic transcriptomic patterns that delineate the emergence of these lineages, which were conserved across lines, along with individual line-specific transcriptional signatures that were invariant throughout differentiation. These transcriptomic signatures predicted an antagonism between SOX21-driven forebrain fates and retinoic acid-induced hindbrain fates. Replicate lines and paired adult tissue demonstrated the stability of these line-specific transcriptomic traits. We show that this transcriptomic variation in lineage bias had both genetic and epigenetic origins, aligned with the anterior-to-posterior structure of early mammalian development, and was present across a large collection of hPSC lines. These findings contribute to developing systematic analyses of PSCs to define the origin and consequences of variation in the early events orchestrating individual human development.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Pluripotentes , Transcriptoma , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/genética , Linaje de la Célula/genética , Línea Celular , Tretinoina/farmacología , Tretinoina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Epigénesis Genética
16.
Cancer Res ; 84(9): 1517-1533, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38587552

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an immunosuppressive tumor microenvironment enriched with cancer-associated fibroblasts (CAF). This study used a convergence approach to identify tumor cell and CAF interactions through the integration of single-cell data from human tumors with human organoid coculture experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing data indicated that CAF density is associated with increased inflammation and epithelial-mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data from patient-derived organoid and CAF cocultures provided in silico validation of CAF induction of inflammatory and EMT epithelial cell states. Further experimental validation in cocultures demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGFA) interactions with neuropilin-1 mediating CAF-epithelial cell cross-talk. Together, this study introduces transfer learning from human single-cell data to organoid coculture analyses for experimental validation of discoveries of cell-cell cross-talk and identifies fibroblast-mediated regulation of EMT and inflammation. SIGNIFICANCE: Adaptation of transfer learning to relate human single-cell RNA sequencing data to organoid-CAF cocultures facilitates discovery of human pancreatic cancer intercellular interactions and uncovers cross-talk between CAFs and tumor cells through VEGFA and ITGB1.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Inflamación , Integrina beta1 , Neoplasias Pancreáticas , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Inflamación/patología , Inflamación/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Organoides/patología , Organoides/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Comunicación Celular
17.
bioRxiv ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39386736

RESUMEN

Pancreatic adenocarcinoma (PDAC) is a rapidly progressing cancer that responds poorly to immunotherapies. Intratumoral tertiary lymphoid structures (TLS) have been associated with rare long-term PDAC survivors, but the role of TLS in PDAC and their spatial relationships within the context of the broader tumor microenvironment remain unknown. We generated a spatial multi-omics atlas encompassing 26 PDAC tumors from patients treated with combination immunotherapies. Using machine learning-enabled H&E image classification models and unsupervised gene expression matrix factorization methods for spatial transcriptomics, we characterized cellular states within TLS niches spanning across distinct morphologies and immunotherapies. Unsupervised learning generated a TLS-specific spatial gene expression signature that significantly associates with improved survival in PDAC patients. These analyses demonstrate TLS-associated intratumoral B cell maturation in pathological responders, confirmed with spatial proteomics and BCR profiling. Our study also identifies spatial features of pathologic immune responses, revealing TLS maturation colocalizing with IgG/IgA distribution and extracellular matrix remodeling. HIGHLIGHTS: Integrated multi-modal spatial profiling of human PDAC tumors from neoadjuvant immunotherapy clinical trials reveal diverse spatial niches enriched in TLS.TLS maturity is influenced by tumor location and the cellular neighborhoods in which TLS immune cells are recruited.Unsupervised machine learning of genome-wide signatures on spatial transcriptomics data characterizes the TLS-enriched TME and associates TLS transcriptomes with survival outcomes in PDAC.Interactions of spatially variable gene expression patterns showed TLS maturation is coupled with immunoglobulin distribution and ECM remodeling in pathologic responders.Intratumoral plasma cell and immunoglobin gene expression spatial dynamics demonstrate trafficking of TLS-driven humoral immunity in the PDAC TME. Significance: We report a spatial multi-omics atlas of PDAC tumors from a series of immunotherapy neoadjuvant clinical trials. Intratumorally, pathologic responders exhibit mature TLS that propagate plasma cells into malignant niches. Our findings offer insights on the role of TLS-associated humoral immunity and stromal remodeling during immunotherapy treatment.

18.
Patterns (N Y) ; 4(8): 100793, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602211

RESUMEN

Single-cell transcriptomics technologies can uncover changes in the molecular states that underlie cellular phenotypes. However, understanding the dynamic cellular processes requires extending from inferring trajectories from snapshots of cellular states to estimating temporal changes in cellular gene expression. To address this challenge, we have developed a neural ordinary differential-equation-based method, RNAForecaster, for predicting gene expression states in single cells for multiple future time steps in an embedding-independent manner. We demonstrate that RNAForecaster can accurately predict future expression states in simulated single-cell transcriptomic data with cellular tracking over time. We then show that by using metabolic labeling single-cell RNA sequencing (scRNA-seq) data from constitutively dividing cells, RNAForecaster accurately recapitulates many of the expected changes in gene expression during progression through the cell cycle over a 3-day period. Thus, RNAForecaster enables short-term estimation of future expression states in biological systems from high-throughput datasets with temporal information.

19.
Genome Biol ; 24(1): 246, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37885016

RESUMEN

BACKGROUND: RNA velocity analysis of single cells offers the potential to predict temporal dynamics from gene expression. In many systems, RNA velocity has been observed to produce a vector field that qualitatively reflects known features of the system. However, the limitations of RNA velocity estimates are still not well understood. RESULTS: We analyze the impact of different steps in the RNA velocity workflow on direction and speed. We consider both high-dimensional velocity estimates and low-dimensional velocity vector fields mapped onto an embedding. We conclude the transition probability method for mapping velocity estimates onto an embedding is effectively interpolating in the embedding space. Our findings reveal a significant dependence of the RNA velocity workflow on smoothing via the k-nearest-neighbors (k-NN) graph of the observed data. This reliance results in considerable estimation errors for both direction and speed in both high- and low-dimensional settings when the k-NN graph fails to accurately represent the true data structure; this is an unknown feature of real data. RNA velocity performs poorly at estimating speed in both low- and high-dimensional spaces, except in very low noise settings. We introduce a novel quality measure that can identify when RNA velocity should not be used. CONCLUSIONS: Our findings emphasize the importance of choices in the RNA velocity workflow and highlight critical limitations of data analysis. We advise against over-interpreting expression dynamics using RNA velocity, particularly in terms of speed. Finally, we emphasize that the use of RNA velocity in assessing the correctness of a low-dimensional embedding is circular.


Asunto(s)
Probabilidad , Análisis por Conglomerados
20.
Cancer Discov ; 13(5): 1053-1057, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37067199

RESUMEN

SUMMARY: Convergence science teams integrating clinical, biological, engineering, and computational expertise are inventing new forecast systems to monitor and predict evolutionary changes in tumor and immune interactions during early cancer progression and therapeutic response. The resulting methods should inform a new predictive medicine paradigm to select adaptive immunotherapeutic regimens personalized to patients' tumors at a given time during their cancer progression for durable patient response.


Asunto(s)
Inmunoterapia , Neoplasias , Medicina de Precisión , Humanos , Inmunoterapia/métodos , Inmunoterapia/tendencias , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Resistencia a Medicamentos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA