Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 30(1): 130-144, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34737067

RESUMEN

Disruption of CCR5 or CXCR4, the main human immunodeficiency virus type 1 (HIV-1) co-receptors, has been shown to protect primary human CD4+ T cells from HIV-1 infection. Base editing can install targeted point mutations in cellular genomes, and can thus efficiently inactivate genes by introducing stop codons or eliminating start codons without double-stranded DNA break formation. Here, we applied base editors for individual and simultaneous disruption of both co-receptors in primary human CD4+ T cells. Using cytosine base editors we observed premature stop codon introduction in up to 89% of sequenced CCR5 or CXCR4 alleles. Using adenine base editors we eliminated the start codon in CCR5 in up to 95% of primary human CD4+ T cell and up to 88% of CD34+ hematopoietic stem and progenitor cell target alleles. Genome-wide specificity analysis revealed low numbers of off-target mutations that were introduced by base editing, located predominantly in intergenic or intronic regions. We show that our editing strategies prevent transduction with CCR5-tropic and CXCR4-tropic viral vectors in up to 79% and 88% of human CD4+ T cells, respectively. The engineered T cells maintained functionality and overall our results demonstrate the effectiveness of base-editing strategies for efficient and specific ablation of HIV co-receptors in clinically relevant cell types.


Asunto(s)
Edición Génica , Receptores CCR5 , Receptores CXCR4 , Edición Génica/métodos , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/terapia , VIH-1/fisiología , Células Madre Hematopoyéticas/metabolismo , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Linfocitos T/metabolismo
2.
Nat Biomed Eng ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858586

RESUMEN

Methods for the targeted integration of genes in mammalian genomes suffer from low programmability, low efficiencies or low specificities. Here we show that phage-assisted continuous evolution enhances prime-editing-assisted site-specific integrase gene editing (PASSIGE), which couples the programmability of prime editing with the ability of recombinases to precisely integrate large DNA cargoes exceeding 10 kilobases. Evolved and engineered Bxb1 recombinase variants (evoBxb1 and eeBxb1) mediated up to 60% donor integration (3.2-fold that of wild-type Bxb1) in human cell lines with pre-installed recombinase landing sites. In single-transfection experiments at safe-harbour and therapeutically relevant sites, PASSIGE with eeBxb1 led to an average targeted-gene-integration efficiencies of 23% (4.2-fold that of wild-type Bxb1). Notably, integration efficiencies exceeded 30% at multiple sites in primary human fibroblasts. PASSIGE with evoBxb1 or eeBxb1 outperformed PASTE (for 'programmable addition via site-specific targeting elements', a method that uses prime editors fused to recombinases) on average by 9.1-fold and 16-fold, respectively. PASSIGE with continuously evolved recombinases is an unusually efficient method for the targeted integration of genes in mammalian cells.

3.
J Invest Dermatol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763174

RESUMEN

Gene editing nucleases, base editors, and prime editors are potential locus specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa (RDEB); however, many RDEB COL7A1 mutations are unique, making the development of personalized editing reagents challenging. 270 of the ∼320 COL7A1 EB mutations reside in exons that can be skipped, and antisense oligonucleotides (ASO) and gene editing nucleases have been used to create in-frame deletions. ASOs are transient and nucleases generate deleterious double stranded DNA breaks (DSB) and uncontrolled mixtures of allele products. We developed a twin prime editing (twinPE) strategy using the PEmax and recently evolved PE6 prime editors and dual prime editing guide RNAs flanking COL7A1 exon five. Prime editing-mediated deletion of exon 5 with a homozygous premature stop codon was achieved in RDEB fibroblasts, keratinocytes, and iPSC with minimal DSBs, and collagen type VII (C7) protein was restored. TwinPE can replace the target exon with recombinase attachment sequences, and we exploited this to re-insert a normal copy of exon 5 using the Bxb1 recombinase. These findings demonstrate that twinPE can facilitate locus-specific, predictable, in-frame deletions and sequence replacement with few DSBs as a strategy that may enable a single therapeutic agent to treat multiple RDEB patient cohorts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA