Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065423

RESUMEN

Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research.


Asunto(s)
Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Adulto , Anciano , Anciano de 80 o más Años , Aprendizaje Profundo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Neoplasias Pancreáticas
2.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932860

RESUMEN

BACKGROUND: Gastritis is a prevalent disease and commonly classified into autoimmune (A), bacterial (B), and chemical (C) type gastritis. While the former two subtypes are associated with an increased risk of developing gastric intestinal adenocarcinoma, the latter subtype is not. In this study, we evaluated the capability to classify common gastritis subtypes using convolutional neuronal networks on a small dataset of antrum and corpus biopsies. METHODS: 1230 representative 500 × 500 µm images of 135 patients with type A, type B, and type C gastritis were extracted from scanned histological slides. Patients were allocated randomly into a training set (60%), a validation set (20%), and a test set (20%). One classifier for antrum and one classifier for corpus were trained and optimized. After optimization, the test set was analyzed using a joint result from both classifiers. RESULTS: Overall accuracy in the test set was 84% and was particularly high for type B gastritis with a sensitivity of 100% and a specificity of 93%. CONCLUSIONS: Classification of gastritis subtypes is possible using convolutional neural networks on a small dataset of histopathological images of antrum and corpus biopsies. Deep learning strategies to support routine diagnostic pathology merit further evaluation.


Asunto(s)
Gastritis/patología , Biopsia/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
3.
Clin Transl Med ; 13(7): e1299, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37415390

RESUMEN

INTRODUCTION: Differentiation of histologically similar structures in the liver, including anatomical structures, benign bile duct lesions, or common types of liver metastases, can be challenging with conventional histological tissue sections alone. Accurate histopathological classification is paramount for the diagnosis and adequate treatment of the disease. Deep learning algorithms have been proposed for objective and consistent assessment of digital histopathological images. MATERIALS AND METHODS: In the present study, we trained and evaluated deep learning algorithms based on the EfficientNetV2 and ResNetRS architectures to discriminate between different histopathological classes. For the required dataset, specialized surgical pathologists annotated seven different histological classes, including different non-neoplastic anatomical structures, benign bile duct lesions, and liver metastases from colorectal and pancreatic adenocarcinoma in a large patient cohort. Annotation resulted in a total of 204.159 image patches, followed by discrimination analysis using our deep learning models. Model performance was evaluated on validation and test data using confusion matrices. RESULTS: Evaluation of the test set based on tiles and cases revealed overall highly satisfactory prediction capability of our algorithm for the different histological classes, resulting in a tile accuracy of 89% (38 413/43 059) and case accuracy of 94% (198/211). Importantly, the separation of metastasis versus benign lesions was certainly confident on case level, confirming the classification model performed with high diagnostic accuracy. Moreover, the whole curated raw data set is made publically available. CONCLUSIONS: Deep learning is a promising approach in surgical liver pathology supporting decision making in personalized medicine.


Asunto(s)
Adenocarcinoma , Aprendizaje Profundo , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/diagnóstico , Neoplasias Hepáticas/diagnóstico
5.
Front Oncol ; 12: 1022967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483044

RESUMEN

Basal cell carcinoma (BCC), squamous cell carcinoma (SqCC) and melanoma are among the most common cancer types. Correct diagnosis based on histological evaluation after biopsy or excision is paramount for adequate therapy stratification. Deep learning on histological slides has been suggested to complement and improve routine diagnostics, but publicly available curated and annotated data and usable models trained to distinguish common skin tumors are rare and often lack heterogeneous non-tumor categories. A total of 16 classes from 386 cases were manually annotated on scanned histological slides, 129,364 100 x 100 µm (~395 x 395 px) image tiles were extracted and split into a training, validation and test set. An EfficientV2 neuronal network was trained and optimized to classify image categories. Cross entropy loss, balanced accuracy and Matthews correlation coefficient were used for model evaluation. Image and patient data were assessed with confusion matrices. Application of the model to an external set of whole slides facilitated localization of melanoma and non-tumor tissue. Automated differentiation of BCC, SqCC, melanoma, naevi and non-tumor tissue structures was possible, and a high diagnostic accuracy was achieved in the validation (98%) and test (97%) set. In summary, we provide a curated dataset including the most common neoplasms of the skin and various anatomical compartments to enable researchers to train, validate and improve deep learning models. Automated classification of skin tumors by deep learning techniques is possible with high accuracy, facilitates tumor localization and has the potential to support and improve routine diagnostics.

6.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36551667

RESUMEN

Artificial intelligence (AI) has shown potential for facilitating the detection and classification of tumors. In patients with non-small cell lung cancer, distinguishing between the most common subtypes, adenocarcinoma (ADC) and squamous cell carcinoma (SqCC), is crucial for the development of an effective treatment plan. This task, however, may still present challenges in clinical routine. We propose a two-modality, AI-based classification algorithm to detect and subtype tumor areas, which combines information from matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) data and digital microscopy whole slide images (WSIs) of lung tissue sections. The method consists of first detecting areas with high tumor cell content by performing a segmentation of the hematoxylin and eosin-stained (H&E-stained) WSIs, and subsequently classifying the tumor areas based on the corresponding MALDI MSI data. We trained the algorithm on six tissue microarrays (TMAs) with tumor samples from N = 232 patients and used 14 additional whole sections for validation and model selection. Classification accuracy was evaluated on a test dataset with another 16 whole sections. The algorithm accurately detected and classified tumor areas, yielding a test accuracy of 94.7% on spectrum level, and correctly classified 15 of 16 test sections. When an additional quality control criterion was introduced, a 100% test accuracy was achieved on sections that passed the quality control (14 of 16). The presented method provides a step further towards the inclusion of AI and MALDI MSI data into clinical routine and has the potential to reduce the pathologist's work load. A careful analysis of the results revealed specific challenges to be considered when training neural networks on data from lung cancer tissue.

7.
Proteomics Clin Appl ; 16(4): e2100068, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35238465

RESUMEN

Subtyping of the most common non-small cell lung cancer (NSCLC) tumor types adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) is still a challenge in the clinical routine and a correct diagnosis is crucial for an adequate therapy selection. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has shown potential for NSCLC subtyping but is subject to strong technical variability and has only been applied to tissue samples assembled in tissue microarrays (TMAs). To our knowledge, a successful transfer of a classifier from TMAs to whole sections, which are generated in the standard clinical routine, has not been presented in the literature as of yet. We introduce a classification algorithm using extensive preprocessing and a classifier (either a neural network or a linear discriminant analysis (LDA)) to robustly classify whole sections of ADC and SqCC lung tissue. The classifiers were trained on TMAs and validated and tested on whole sections. Vital for a successful application on whole sections is the extensive preprocessing and the use of whole sections for hyperparameter selection. The classification system with the neural network/LDA results in 99.0%/98.3% test accuracy on spectra level and 100.0%/100.0% test accuracy on whole section level, respectively, and, therefore, provides a powerful tool to support the pathologist's decision making process. The presented method is a step further towards a clinical application of MALDI MSI and artificial intelligence for subtyping of NSCLC tissue sections.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Inteligencia Artificial , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Humanos , Neoplasias Pulmonares/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
8.
Cancers (Basel) ; 13(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067726

RESUMEN

The diagnosis and the subtyping of non-Hodgkin lymphoma (NHL) are challenging and require expert knowledge, great experience, thorough morphological analysis, and often additional expensive immunohistological and molecular methods. As these requirements are not always available, supplemental methods supporting morphological-based decision making and potentially entity subtyping are required. Deep learning methods have been shown to classify histopathological images with high accuracy, but data on NHL subtyping are limited. After annotation of histopathological whole-slide images and image patch extraction, we trained and optimized an EfficientNet convolutional neuronal network algorithm on 84,139 image patches from 629 patients and evaluated its potential to classify tumor-free reference lymph nodes, nodal small lymphocytic lymphoma/chronic lymphocytic leukemia, and nodal diffuse large B-cell lymphoma. The optimized algorithm achieved an accuracy of 95.56% on an independent test set including 16,960 image patches from 125 patients after the application of quality controls. Automatic classification of NHL is possible with high accuracy using deep learning on histopathological images and routine diagnostic applications should be pursued.

9.
Cancers (Basel) ; 12(6)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560475

RESUMEN

Reliable entity subtyping is paramount for therapy stratification in lung cancer. Morphological evaluation remains the basis for entity subtyping and directs the application of additional methods such as immunohistochemistry (IHC). The decision of whether to perform IHC for subtyping is subjective, and access to IHC is not available worldwide. Thus, the application of additional methods to support morphological entity subtyping is desirable. Therefore, the ability of convolutional neuronal networks (CNNs) to classify the most common lung cancer subtypes, pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell lung cancer (SCLC), was evaluated. A cohort of 80 ADC, 80 SqCC, 80 SCLC, and 30 skeletal muscle specimens was assembled; slides were scanned; tumor areas were annotated; image patches were extracted; and cases were randomly assigned to a training, validation or test set. Multiple CNN architectures (VGG16, InceptionV3, and InceptionResNetV2) were trained and optimized to classify the four entities. A quality control (QC) metric was established. An optimized InceptionV3 CNN architecture yielded the highest classification accuracy and was used for the classification of the test set. Image patch and patient-based CNN classification results were 95% and 100% in the test set after the application of strict QC. Misclassified cases mainly included ADC and SqCC. The QC metric identified cases that needed further IHC for definite entity subtyping. The study highlights the potential and limitations of CNN image classification models for tumor differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA