Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 39(13): 2470-2481, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30700533

RESUMEN

Adaptive motor control critically depends on the interconnected nuclei of the basal ganglia in the CNS. A pivotal element of the basal ganglia is the subthalamic nucleus (STN), which serves as a therapeutic target for deep brain stimulation (DBS) in movement disorders, such as Parkinson's disease. The functional connectivity of the STN at the microcircuit level, however, still requires rigorous investigation. Here we combine multiple simultaneous whole-cell recordings with extracellular stimulation and post hoc neuroanatomical analysis to investigate intrinsic and afferent connectivity and synaptic properties of the STN in acute brain slices obtained from rats of both sexes. Our data reveal an absence of intrinsic connectivity and an afferent innervation with low divergence, suggesting that STN neurons operate as independent processing elements driven by upstream structures. Hence, synchrony in the STN, a hallmark of motor processing, exclusively depends on the interactions and dynamics of GABAergic and glutamatergic afferents. Importantly, these inputs are subject to differential short-term depression when stimulated at high, DBS-like frequencies, shifting the balance of excitation and inhibition toward inhibition. Thus, we present a mechanism for fast yet transient decoupling of the STN from synchronizing afferent control. Together, our study provides new insights into the microcircuit organization of the STN by identifying its neurons as parallel processing units and thus sets new constraints for future computational models of the basal ganglia. The observed differential short-term plasticity of afferent inputs further offers a basis to better understand and optimize DBS algorithms.SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a pivotal element of the basal ganglia and serves as target for deep brain stimulation, but information on the functional connectivity of its neurons is limited. To investigate the STN microcircuitry, we combined multiple simultaneous patch-clamp recordings and neuroanatomical analysis. Our results provide new insights into the synaptic organization of the STN identifying its neurons as parallel processing units and thus set new constraints for future computational models of the basal ganglia. We further find that synaptic dynamics of afferent inputs result in a rapid yet transient decoupling of the STN when stimulated at high frequencies. These results offer a better understanding of deep brain stimulation mechanisms, promoting the development of optimized algorithms.


Asunto(s)
Neuronas/fisiología , Núcleo Subtalámico/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Ganglios Basales/fisiología , Estimulación Encefálica Profunda , Estimulación Eléctrica , Femenino , Neuronas GABAérgicas/fisiología , Ácido Glutámico/fisiología , Masculino , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Plasticidad Neuronal , Neuronas/citología , Ratas Wistar , Núcleo Subtalámico/citología , Potenciales Sinápticos
2.
Mov Disord ; 32(8): 1183-1190, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28639263

RESUMEN

BACKGROUND: Exaggerated oscillatory activity in the beta frequency band in the subthalamic nucleus has been suggested to be related to bradykinesia in Parkinson's disease (PD). However, studies seeking correlations between such activity in the local field potential and motor performance have been limited to the immediate postoperative period, which may be confounded by a stun effect that leads to the temporary alleviation of PD deficits. METHODS: Local field potentials were recorded simultaneously with motor performance in PD patients several months after neurostimulator implantation. This was enabled by the chronic implantation of a pulse generator with the capacity to record and transmit local field potentials from deep brain stimulation electrodes. Specifically, we investigated oscillatory beta power dynamics and objective measures of bradykinesia during an upper limb alternating pronation and supination task in 9 patients. RESULTS: Although beta power was suppressed during continuously repeated movements, this suppression progressively diminished over time in tandem with a progressive decrement in the frequency and amplitude of movements. The relationship between changes within local field potentials and movement parameters was significant across patients, and not present for theta/alpha frequencies (5-12 Hz). Change in movement frequency furthermore related to beta power dynamics within patients. CONCLUSIONS: Changes in beta power are linked to changes in movement performance and the sequence effect of bradykinesia months after neurostimulator implantation. These findings provide further evidence that beta power may serve as a biomarker for bradykinesia and provide a suitable substrate for feedback control in chronic adaptive deep brain stimulation. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ritmo beta/fisiología , Estimulación Encefálica Profunda/efectos adversos , Electrodos Implantados/efectos adversos , Hipocinesia/etiología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Anciano , Femenino , Estudios de Seguimiento , Lateralidad Funcional , Humanos , Masculino , Desempeño Psicomotor , Análisis Espectral , Extremidad Superior/fisiopatología
3.
J Parkinsons Dis ; 14(2): 269-282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38363617

RESUMEN

Background: Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective: This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods: In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results: Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions: Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Fenómenos Biomecánicos , Marcha , Pierna , Enfermedad de Parkinson/terapia , Estudios Cruzados , Método Doble Ciego
4.
PLoS One ; 17(9): e0273699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129852

RESUMEN

Experimental evidence in both human and animal studies demonstrated that deep brain stimulation (DBS) can induce short-term synaptic plasticity (STP) in the stimulated nucleus. Given that DBS-induced STP may be connected to the therapeutic effects of DBS, we sought to develop a computational predictive model that infers the dynamics of STP in response to DBS at different frequencies. Existing methods for estimating STP-either model-based or model-free approaches-require access to pre-synaptic spiking activity. However, in the context of DBS, extracellular stimulation (e.g. DBS) can be used to elicit presynaptic activations directly. We present a model-based approach that integrates multiple individual frequencies of DBS-like electrical stimulation as pre-synaptic spikes and infers parameters of the Tsodyks-Markram (TM) model from post-synaptic currents of the stimulated nucleus. By distinguishing between the steady-state and transient responses of the TM model, we develop a novel dual optimization algorithm that infers the model parameters in two steps. First, the TM model parameters are calculated by integrating multiple frequencies of stimulation to estimate the steady state response of post-synaptic current through a closed-form analytical solution. The results of this step are utilized as the initial values for the second step in which a non-derivative optimization algorithm is used to track the transient response of the post-synaptic potential across different individual frequencies of stimulation. Moreover, in order to confirm the applicability of the method, we applied our algorithm-as a proof of concept-to empirical data recorded from acute rodent brain slices of the subthalamic nucleus (STN) during DBS-like stimulation to infer dynamics of STP for inhibitory synaptic inputs.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Algoritmos , Animales , Estimulación Encefálica Profunda/métodos , Estimulación Eléctrica , Humanos , Plasticidad Neuronal/fisiología , Núcleo Subtalámico/fisiología , Potenciales Sinápticos
5.
Case Rep Neurol ; 13(3): 756-762, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082645

RESUMEN

Primary Epstein-Barr virus (EBV) infection is the main cause of infectious mononucleosis (IM), which typically presents with a triad of fever, lymphadenopathy, and tonsillar pharyngitis in young adults. In contrast, neurological manifestations of IM are rare. We report on a 23-year-old man with subacute oculomotor nerve palsy followed by symptoms of IM 6 days later. Primary EBV infection was confirmed by PCR detection of EBV DNA in blood as well as by subsequent serology. High-resolution magnetic resonance imaging revealed an edematous change at the root exit zone and gadolinium enhancement of the right oculomotor nerve as well as pial enhancement adjacent to the right ventral mesencephalon. A review of the literature identified 5 further patients with isolated oculomotor nerve palsy as the presenting symptom of unfolding primary EBV infection. MRIs performed in 3 of those 5 patients revealed a pattern of contrast enhancement similar to that of the present case. This case report and literature review highlight that, although rare, IM should be considered in the differential diagnosis of oculomotor nerve palsy in young adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA