Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Genomics ; 18(1): 304, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28415970

RESUMEN

BACKGROUND: Endogenous small interfering (esi)RNAs repress mRNA levels and retrotransposon mobility in Drosophila somatic cells by poorly understood mechanisms. 21 nucleotide esiRNAs are primarily generated from retrotransposons and two inverted repeat (hairpin) loci in Drosophila culture cells in a Dicer2 dependent manner. Additionally, proteins involved in 3' end processing, such as Symplekin, CPSF73 and CPSR100, have been recently implicated in the esiRNA pathway. RESULTS: Here we present evidence of overlap between two essential RNA metabolic pathways: esiRNA biogenesis and mRNA 3' end processing. We have identified a nucleus-specific interaction between the essential esiRNA cleavage enzyme Dicer2 (Dcr2) and Symplekin, a component of the core cleavage complex (CCC) required for 3' end processing of all eukaryotic mRNAs. This interaction is mediated by the N-terminal 271 amino acids of Symplekin; CCC factors CPSF73 and CPSF100 do not contact Dcr2. While Dcr2 binds the CCC, Dcr2 knockdown does not affect mRNA 3' end formation. RNAi-depletion of CCC components Symplekin and CPSF73 causes perturbations in esiRNA abundance that correlate with fluctuations in retrotransposon and hairpin esiRNA precursor levels. We also discovered that esiRNAs generated from retrotransposons and hairpins have distinct physical characteristics including a higher predominance of 22 nucleotide hairpin-derived esiRNAs and differences in 3' and 5' base preference. Additionally, retrotransposon precursors and derived esiRNAs are highly enriched in the nucleus while hairpins and hairpin derived esiRNAs are predominantly cytoplasmic similar to canonical mRNAs. RNAi-depletion of either CPSF73 or Symplekin results in nuclear retention of both hairpin and retrotransposon precursors suggesting that polyadenylation indirectly affects cellular localization of Dcr2 substrates. CONCLUSIONS: Together, these observations support a novel mechanism in which differences in localization of esiRNA precursors impacts esiRNA biogenesis. Hairpin-derived esiRNAs are generated in the cytoplasm independent of Dcr2-Symplekin interactions, while retrotransposons are processed in the nucleus.


Asunto(s)
ARN Interferente Pequeño/metabolismo , Retroelementos/genética , Regiones no Traducidas 3' , Animales , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Microscopía Fluorescente , Interferencia de ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
2.
RNA ; 21(8): 1404-18, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26081560

RESUMEN

A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3' end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272-1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3' end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3' end processing similar to RNAi-depletion of histone-specific 3' end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3' end processing of histone mRNAs.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Histonas/genética , Mutación , Poliadenilación , Técnicas de Cultivo de Tejidos , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética
3.
Mol Cell ; 34(3): 322-32, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450530

RESUMEN

Metazoan histone mRNAs are unique: their pre-mRNAs contain no introns, and the mRNAs are not polyadenylated, ending instead in a conserved stem-loop structure. In Drosophila, canonical poly(A) signals are located downstream of the normal cleavage site of each histone gene and are utilized when histone 3' end formation is inhibited. Here we define a subcomplex of poly(A) factors that are required for histone pre-mRNA processing. We demonstrate that Symplekin, CPSF73, and CPSF100 are present in a stable complex and interact with histone-specific processing factors. We use chromatin immunoprecipitation to show that Symplekin and CPSF73, but not CstF50, cotranscriptionally associate with histone genes. Depletion of SLBP recruits CstF50 to histone genes. Knockdown of CPSF160 or CstF64 downregulates Symplekin but does not affect histone pre-mRNA processing or association of Symplekin with the histone locus. These results suggest that a common core cleavage factor is required for processing of histone and polyadenylated pre-mRNAs.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Estimulación del Desdoblamiento/genética , Factor de Estimulación del Desdoblamiento/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Complejos Multiproteicos , Proteínas Nucleares/genética , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética
4.
Nucleic Acids Res ; 34(9): 2820-32, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16717287

RESUMEN

While non-specific DNA plays a role in target localization for many recombinases, transcription factors and restriction enzymes, the importance of non-specific DNA interactions for transposases has not been investigated. Here, we discuss non-specific DNA-Tn5 Transposase (Tnp) interactions and suggest how they stabilize the Tnp and modulate Tnp localization of the 19 bp Tnp recognition end sequences (ESes). DNA protection assays indicate that full-length Tnp interacts efficiently with supercoiled DNA that does not contain ESes. These interactions significantly prolong the lifetime of Tnp, in vitro. The balance between non-specific DNA bound and free Tnp is affected by DNA topology, yet, intermolecular transfer of active Tnp occurs with both supercoiled and linear non-specific DNA. Experiments with substrates of varying lengths show that Tn5 Tnp can utilize non-specific DNA to facilitate localization of an intramolecular ES over distances less than 464 bp. Finally, synaptic complex formation is inhibited in the presence of increasing concentrations of supercoiled and linear pUC19. These experiments strongly suggest that Tn5 Tnp has a robust non-specific DNA binding activity, that non-specific DNA modulates ES sequence localization within the global DNA, most likely through a direct transfer mechanism, and that non-specific DNA binding may play a role in the cis bias manifested by Tn5 transposition.


Asunto(s)
ADN/metabolismo , Transposasas/metabolismo , ADN/química , ADN Superhelicoidal/metabolismo , Estabilidad de Enzimas , Semivida , Unión Proteica , Eliminación de Secuencia , Transposasas/química , Transposasas/genética
5.
Mob Genet Elements ; 7(3): 1-18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28580197

RESUMEN

Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster.

6.
Biochemistry ; 45(51): 15552-62, 2006 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-17176076

RESUMEN

X-ray cocrystal structures of Tn5 transposase (Tnp) bound to its 19 base pair (bp) recognition end sequence (ES) reveal contacts between a beta-loop (amino acids 240-260) and positions 3, 4, 5, and 6 of the ES. Here, we show that mutations of residues in this loop affect both in vivo and in vitro transposition. Most mutations are detrimental, whereas some mutations at position 242 cause hyperactivity. More specifically, mutations to the beta-loop affect every individual step of transposition tested. Mutants performing in vivo and in vitro transposition less efficiently also form fewer synaptic complexes, whereas hyperactive Tnps form more synaptic complexes. Surprisingly, two hypoactive mutations, K244R and R253L, also affect the cleavage steps of transposition with a much more dramatic effect on the second double end break (DEB) complex formation step, indicating that the beta-loop likely plays an important roll in positioning the substrate DNA within the catalytic site. Finally, all mutants tested decrease efficiency of the final transposition step, strand transfer. A disparity in cleavage rate constants in vitro for mutants with changes to the proline at position 242 on transposons flanked by ESs differing in the orientation of the A-T base pair at position 4 allows us to postulate that P242 contacts the position 4 nucleotide pair. On the basis of these data, we propose a sequential model for end cleavage in Tn5 transposition in which the uncleaved PEC is not symmetrical, and conformational changes are necessary between the first and second cleavage events and also for the final strand transfer step of transposition.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación Puntual , Transposasas/química , Transposasas/genética , Secuencia de Bases , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/fisiología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Secundaria de Proteína/genética , Transposasas/fisiología
7.
Fly (Austin) ; 10(1): 1-10, 2016 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-26986720

RESUMEN

Understanding regulation of transposon movement in somatic cells is important as mobile elements can cause detrimental genomic rearrangements. Generally, transposons move via one of 2 mechanisms; retrotransposons utilize an RNA intermediate, therefore copying themselves and amplifying throughout the genome, while terminal inverted repeat transposons (TIR Tns) excise DNA sequences from the genome and integrate into a new location. Our recently published work indicates that retrotransposons in Drosophila tissue culture cells are actively transcribed in the antisense direction. Our data support a model in which convergent transcription of retrotransposons from intra element transcription start sites results in complementary RNAs that hybridize to form substrates for Dicer-2, the endogenous small interfering (esi)RNA generating enzyme. Here, we extend our previous analysis to TIR Tns. In contrast to retrotransposons, our data show that antisense TIR Tn RNAs result from transcription of intronic TIR Tns oriented antisense to their host genes. Also, disproportionately less esiRNAs are generated from TIR transcripts than from retrotransposons and transcription of very few individual TIR Tns could be confirmed. Collectively, these data support a model in which TIR Tns are regulated at the level of Transposase production while retrotransposons are regulated with esiRNA post-transcriptional mechanisms in Drosophila somatic cells.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Regulación de la Expresión Génica , Genoma , Secuencias Repetidas Terminales , Transcripción Genética , Transposasas/química , Transposasas/genética
8.
Genetics ; 202(1): 107-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26534950

RESUMEN

Movement of transposons causes insertions, deletions, and chromosomal rearrangements potentially leading to premature lethality in Drosophila melanogaster. To repress these elements and combat genomic instability, eukaryotes have evolved several small RNA-mediated defense mechanisms. Specifically, in Drosophila somatic cells, endogenous small interfering (esi)RNAs suppress retrotransposon mobility. EsiRNAs are produced by Dicer-2 processing of double-stranded RNA precursors, yet the origins of these precursors are unknown. We show that most transposon families are transcribed in both the sense (S) and antisense (AS) direction in Dmel-2 cells. LTR retrotransposons Dm297, mdg1, and blood, and non-LTR retrotransposons juan and jockey transcripts, are generated from intraelement transcription start sites with canonical RNA polymerase II promoters. We also determined that retrotransposon antisense transcripts are less polyadenylated than sense. RNA-seq and small RNA-seq revealed that Dicer-2 RNA interference (RNAi) depletion causes a decrease in the number of esiRNAs mapping to retrotransposons and an increase in expression of both S and AS retrotransposon transcripts. These data support a model in which double-stranded RNA precursors are derived from convergent transcription and processed by Dicer-2 into esiRNAs that silence both sense and antisense retrotransposon transcripts. Reduction of sense retrotransposon transcripts potentially lowers element-specific protein levels to prevent transposition. This mechanism preserves genomic integrity and is especially important for Drosophila fitness because mobile genetic elements are highly active.


Asunto(s)
Evolución Molecular , ARN Interferente Pequeño , Retroelementos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen , Poliadenilación , Regiones Promotoras Genéticas , ARN Helicasas/genética , ARN sin Sentido/genética , Ribonucleasa III/genética , Transcripción Genética
9.
J Mol Biol ; 392(1): 115-28, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19576221

RESUMEN

The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the approximately 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 A resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/química , Factores de Escisión y Poliadenilación de ARNm/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA