Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 19(6): e1011424, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267422

RESUMEN

Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis, indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health.


Asunto(s)
Enterococcus faecium , Enterococcus , Humanos , Enterococcus/genética , Elementos Transponibles de ADN/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Enterococcus faecalis/genética
2.
J Antimicrob Chemother ; 79(4): 801-809, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334390

RESUMEN

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Infecciones por Bacterias Grampositivas , Humanos , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Enterococcus faecalis , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Endocarditis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Quimioterapia Combinada
3.
Mol Cell ; 61(5): 774-787, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942680

RESUMEN

Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-ß C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18ß form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-ß heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-ß heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Telofase , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transducción de Señal , Transfección
4.
Transpl Infect Dis ; 25(2): e14041, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36864824

RESUMEN

BACKGROUND: There is increased interest in bacteriophage (phage) therapy to treat infections caused by antibiotic-resistant bacteria. A lung transplant recipient with cystic fibrosis and Burkholderia multivorans infection was treated with inhaled phage therapy for 7 days before she died. METHODS: Phages were given via nebulization through the mechanical ventilation circuit. Remnant respiratory specimens and serum were collected. We quantified phage and bacterial deoxyribonucleic acid (DNA) using quantitative polymerase chain reaction, and tested phage neutralization in the presence of patient serum. We performed whole genome sequencing and antibiotic and phage susceptibility testing on 15 B. multivorans isolates. Finally, we extracted lipopolysaccharide (LPS) from two isolates and visualized their LPS using gel electrophoresis. RESULTS: Phage therapy was temporally followed by a temporary improvement in leukocytosis and hemodynamics, followed by worsening leukocytosis on day 5, deterioration on day 7, and death on day 8. We detected phage DNA in respiratory samples after 6 days of nebulized phage therapy. Bacterial DNA in respiratory samples decreased over time, and no serum neutralization was detected. Isolates collected between 2001 and 2020 were closely related but differed in their antibiotic and phage susceptibility profiles. Early isolates were not susceptible to the phage used for therapy, while later isolates, including two isolates collected during phage therapy, were susceptible. Susceptibility to the phage used for therapy was correlated with differences in O-antigen profiles of an early versus a late isolate. CONCLUSIONS: This case of clinical failure of nebulized phage therapy highlights the limitations, unknowns, and challenges of phage therapy for resistant infections.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Fibrosis Quística , Terapia de Fagos , Femenino , Humanos , Antibacterianos/uso terapéutico , Infecciones por Burkholderia/tratamiento farmacológico , Fibrosis Quística/microbiología , ADN/uso terapéutico , Leucocitosis/tratamiento farmacológico , Lipopolisacáridos/uso terapéutico , Pulmón/microbiología , Receptores de Trasplantes , Resultado Fatal , Adulto
5.
Clin Infect Dis ; 75(4): 710-714, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35136967

RESUMEN

We report the emergence of imipenem-relebactam nonsusceptible Pseudomonas aeruginosa in 5 patients treated for nosocomial pneumonia for 10-28 days. Genome sequence analysis identified treatment-emergent mutations in MexAB-OprM and/or MexEF-OprN efflux operons that arose independently in each patient across distinct P. aeruginosa sequence types. Testing with efflux-inhibitor PAßN restored imipenem-relebactam susceptibility.


Asunto(s)
Neumonía , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo , Humanos , Imipenem/farmacología , Imipenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética
6.
Cell Mol Life Sci ; 70(3): 387-406, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22729156

RESUMEN

The centromere is the chromosomal region that directs kinetochore assembly during mitosis in order to facilitate the faithful segregation of sister chromatids. The location of the human centromere is epigenetically specified. The presence of nucleosomes that contain the histone H3 variant, CENP-A, are thought to be the epigenetic mark that indicates active centromeres. Maintenance of centromeric identity requires the deposition of new CENP-A nucleosomes with each cell cycle. During S-phase, existing CENP-A nucleosomes are divided among the daughter chromosomes, while new CENP-A nucleosomes are deposited during early G1. The specific assembly of CENP-A nucleosomes at centromeres requires the Mis18 complex, which recruits the CENP-A assembly factor, HJURP. We will review the unique features of centromeric chromatin as well as the mechanism of CENP-A nucleosome deposition. We will also highlight a few recent discoveries that begin to elucidate the factors that temporally and spatially control CENP-A deposition.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Autoantígenos/química , Centrómero/metabolismo , Proteína A Centromérica , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Epigenómica , Histonas/genética , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , ARN no Traducido/metabolismo , Fase S
7.
mBio ; 15(3): e0339623, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38353560

RESUMEN

Enterococcus faecium is a member of the human gastrointestinal (GI) microbiota but can also cause invasive infections, especially in immunocompromised hosts. Enterococci display intrinsic resistance to many antibiotics, and most clinical E. faecium isolates have acquired vancomycin resistance, leaving clinicians with a limited repertoire of effective antibiotics. As such, vancomycin-resistant E. faecium (VREfm) has become an increasingly difficult to treat nosocomial pathogen that is often associated with treatment failure and recurrent infections. We followed a patient with recurrent E. faecium bloodstream infections (BSIs) of increasing severity, which ultimately became unresponsive to antibiotic combination therapy over the course of 7 years. Whole-genome sequencing (WGS) showed that the patient was colonized with closely related E. faecium strains for at least 2 years and that invasive isolates likely emerged from a large E. faecium population in the patient's gastrointestinal (GI) tract. The addition of bacteriophage (phage) therapy to the patient's antimicrobial regimen was associated with several months of clinical improvement and reduced intestinal burden of VRE and E. faecium. In vitro analysis showed that antibiotic and phage combination therapy improved bacterial growth suppression compared to therapy with either alone. Eventual E. faecium BSI recurrence was not associated with the development of antibiotic or phage resistance in post-treatment isolates. However, an anti-phage-neutralizing antibody response occurred that coincided with an increased relative abundance of VRE in the GI tract, both of which may have contributed to clinical failure. Taken together, these findings highlight the potential utility and limitations of phage therapy to treat antibiotic-resistant enterococcal infections. IMPORTANCE: Phage therapy is an emerging therapeutic approach for treating bacterial infections that do not respond to traditional antibiotics. The addition of phage therapy to systemic antibiotics to treat a patient with recurrent E. faecium infections that were non-responsive to antibiotics alone resulted in fewer hospitalizations and improved the patient's quality of life. Combination phage and antibiotic therapy reduced E. faecium and VRE abundance in the patient's stool. Eventually, an anti-phage antibody response emerged that was able to neutralize phage activity, which may have limited clinical efficacy. This study demonstrates the potential of phages as an additional option in the antimicrobial toolbox for treating invasive enterococcal infections and highlights the need for further investigation to ensure phage therapy can be deployed for maximum clinical benefit.


Asunto(s)
Bacteriemia , Bacteriófagos , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Humanos , Antibacterianos/uso terapéutico , Bacteriófagos/fisiología , Calidad de Vida , Enterococcus , Bacteriemia/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Pruebas de Sensibilidad Microbiana
8.
mBio ; 13(4): e0067022, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35762592

RESUMEN

Enterococci are gram-positive, gastrointestinal (GI) tract commensal bacteria that have recently evolved into multidrug-resistant nosocomial pathogens. Enterococci are intrinsically hardy, meaning that they can thrive in challenging environments and outlast other commensal bacteria. Further adaptations enable enterococci to dominate the GI tracts of hospitalized patients, and this domination precedes invasive infection and facilitates transmission to other patients. A recent study by Boumasmoud et al. used whole genome sequencing (WGS) to characterize 69 vancomycin-resistant Enterococcus faecium (VREfm) isolates collected from a Swiss hospital. WGS uncovered a clone that was repeatedly sampled from dozens of patients over multiple years. This persistent clone accumulated mutations as well as a novel linear plasmid, which together likely increased its persistence in the GI tracts of infected patients. This study is one of several recent examples that highlight the genetic plasticity of VREfm as it adapts to the hospitalized gut and becomes a leading nosocomial pathogen.


Asunto(s)
Infección Hospitalaria , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Antibacterianos , Infección Hospitalaria/microbiología , Enterococcus faecium/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Enterococos Resistentes a la Vancomicina/genética , Secuenciación Completa del Genoma
9.
Cell Rep ; 15(10): 2127-2135, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27239045

RESUMEN

The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A-specific assembly factor HJURP (Holliday junction recognition protein). The human Mis18 complex consists of Mis18α, Mis18ß, and Mis18 binding protein 1 (Mis18BP1/hsKNL2). Although Mis18α and Mis18ß are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α directly interacts with the N terminus of Mis18BP1, whereas Mis18ß directly interacts with CENP-C during G1 phase, revealing that these proteins have evolved to serve distinct functions in centromeres of higher eukaryotes. The N terminus of Mis18BP1, containing both the Mis18α and CENP-C binding domains, is necessary and sufficient for centromeric localization. Therefore, the Mis18 complex contains dual CENP-C recognition motifs that are combinatorially required to generate robust centromeric localization that leads to CENP-A deposition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Ciclo Celular , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/química , Secuencia Conservada , Cisteína/metabolismo , Células HEK293 , Humanos , Unión Proteica , Dominios Proteicos
10.
Dev Cell ; 22(1): 52-63, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22169070

RESUMEN

Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We further show that the key CENP-A assembly factor Mis18BP1(HsKNL2) is phosphorylated in a cell cycle-dependent manner that controls its centromere localization during mitotic exit. These results strongly support a model in which the CENP-A assembly machinery is poised for activation throughout the cell cycle but kept in an inactive noncentromeric state by Cdk activity during S, G2, and M phases. Alleviation of this inhibition in G1 phase ensures tight coupling between DNA replication, cell division, and subsequent centromere maturation.


Asunto(s)
Autoantígenos/metabolismo , Proteína Quinasa CDC2/metabolismo , Centrómero/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Epigenómica , Fase G1/fisiología , Western Blotting , Ciclo Celular , División Celular , Proteína A Centromérica , Cromatina/genética , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Mitosis/fisiología , Fosforilación
11.
J Cell Biol ; 194(2): 229-43, 2011 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-21768289

RESUMEN

Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was sufficient to direct the assembly of a functional centromere as indicated by the recruitment of the constitutive centromere-associated network proteins, the microtubule-binding protein NDC80, and the formation of stable kinetochore-microtubule attachments. An amino-terminal fragment of HJURP was able to assemble CENP-A nucleosomes in vitro, demonstrating that HJURP is a chromatin assembly factor. Furthermore, HJURP recruitment to endogenous centromeres required the Mis18 complex. Together, these data suggest that the role of the Mis18 complex in CENP-A deposition is to recruit HJURP and that the CENP-A nucleosome assembly activity of HJURP is responsible for centromeric chromatin assembly to maintain the epigenetic mark.


Asunto(s)
Autoantígenos/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinetocoros/metabolismo , Animales , Células Cultivadas , Proteína A Centromérica , Células HeLa , Humanos , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA