RESUMEN
Phospholipid aldehydes represent a particular subclass of lipid oxidation products. They are chemically reactive and can form Schiff bases with proteins and aminophospholipids. As chemically bound molecular entities they modulate the functional properties of biomolecules in solution and the surface of supramolecular systems including plasma lipoproteins and cell membranes. The lipid-protein and lipid-lipid conjugates may be considered the active primary platforms that are responsible for the biological effects of aldehydophospholipids, e.g. receptor binding, cell signaling, and recognition by the immune system. Despite the fact that aldehydophospholipids are covalently associated, they are subject to exchange between nucleophiles since their imine conjugates are not stable. As a consequence, aldehydophospholipids exist in a dynamic equilibrium between different "states" depending on the lipid and protein environment. Aldehydophospholipids may also contribute to the systemic administration and activity of oxidized phospholipids by inducing release of microparticles by cells. These effects are lipid-specific. Future studies should help clarify the mechanisms and consequences of these membrane-associated effects of "phospholipid stress". This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Asunto(s)
Aldehídos/metabolismo , Fosfolípidos/metabolismo , Procesamiento Proteico-Postraduccional , Aldehídos/química , Animales , Fenómenos Bioquímicos , Fenómenos Biofísicos , Humanos , Fosfolípidos/química , Bases de Schiff/metabolismoRESUMEN
BACKGROUND: The interactions of oxidized low-density lipoprotein (LDL) and macrophages are hallmarks in the development of atherosclerosis. The biological activities of the modified particle in these cells are due to the content of lipid oxidation products and apolipoprotein modification by oxidized phospholipids. RESULTS: It was the aim of this study to determine the role of short-chain oxidized phospholipids as components of modified LDL in cultured macrophages. For this purpose we investigated the effects of the following oxidized phospholipids on cell viability and apoptosis: 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and oxidized alkylacyl phospholipids including 1-O-hexadecyl-2-glutaroyl-sn-glycero-3-phosphocholine (E-PGPC) and 1-O-hexadecyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (E-POVPC). We found that these compounds induced apoptosis in RAW264.7 and bone marrow-derived macrophages. The sn-2 carboxyacyl lipid PGPC was more toxic than POVPC which carries a reactive aldehyde function in position sn-2 of glycerol. The alkylacyl phospholipids (E-PGPC and E-POVPC) and the respective diacyl analogs show similar activities. Apoptosis induced by POVPC and its alkylether derivative could be causally linked to the fast activation of an acid sphingomyelinase, generating the apoptotic second messenger ceramide. In contrast, PGPC and its ether analog only negligibly affected this enzyme pointing to an entirely different mechanism of lipid toxicity. The higher toxicity of PGPC is underscored by more efficient membrane blebbing from apoptotic cells. In addition, the protein pattern of PGPC-induced microparticles is different from the vesicles generated by POPVC. CONCLUSIONS: In summary, our data reveal that oxidized phospholipids induce apoptosis in cultured macrophages. The mechanism of lipid toxicity, however, largely depends on the structural features of the oxidized sn-2 chain.
Asunto(s)
Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Fosfolípidos , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Ceramidas/química , Ceramidas/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Macrófagos/citología , Ratones , Oxidación-Reducción , Fosfolípidos/química , Fosfolípidos/farmacología , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/metabolismoRESUMEN
Glycoproteins from honey-bee (Apis mellifera), such as phospholipase A2 and hyaluronidase, are well-known major bee-venom allergens. They carry N-linked oligosaccharide structures with two types of alpha1,3-fucosylation: the modification by alpha1,3-fucose of the innermost core GlcNAc, which constitutes an epitope recognized by IgE from some bee-venom-allergic patients, and an antennal Lewis-like GalNAcbeta1,4(Fucalpha1,3)GlcNAc moiety. We now report the cloning and expression of two cDNAs encoding the relevant active alpha1,3-FucTs (alpha1,3-fucosyltransferases). The first sequence, closest to that of fruitfly (Drosophila melanogaster) FucTA, was found to be a core alpha1,3-FucT (EC 2.4.1.214), as judged by several enzyme and biochemical assays. The second cDNA encoded an enzyme, most related to Drosophila FucTC, that was shown to be capable of generating the Le(x) [Galbeta1-4(Fucalpha1-3)GlcNAc] epitope in vitro and is the first Lewis-type alpha1,3-FucT (EC 2.4.1.152) to be described in insects. The transcription levels of these two genes in various tissues were examined: FucTA was found to be predominantly expressed in the brain tissue and venom glands, whereas FucTC transcripts were detected at highest levels in venom and hypopharyngeal glands. Very low expression of a third homologue of unknown function, FucTB, was also observed in various tissues. The characterization of these honey-bee gene products not only accounts for the observed alpha1,3-fucosylation of bee-venom glycoproteins, but is expected to aid the identification and subsequent down-regulation of the FucTs in insect cell lines of biotechnological importance.
Asunto(s)
Venenos de Abeja/enzimología , Abejas/enzimología , Abejas/inmunología , Fucosiltransferasas/química , Fucosiltransferasas/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Antígenos del Grupo Sanguíneo de Lewis/biosíntesis , Alérgenos/química , Secuencia de Aminoácidos , Animales , Venenos de Abeja/inmunología , Clonación Molecular , ADN Complementario/metabolismo , Fucosiltransferasas/genética , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Insectos/inmunología , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , TemperaturaRESUMEN
The processing of N-linked oligosaccharides by alpha-mannosidases in the endoplasmic reticulum and Golgi is a process conserved in plants and animals. After the transfer of a GlcNAc residue to Asn-bound Man(5)GlcNAc(2) by N-acetylglucosaminyltransferase I, an alpha-mannosidase (EC 3.2.1.114) removes one alpha1,3-linked and one alpha1,6-linked mannose residue. In this study, we have identified the relevant alpha-mannosidase II gene (aman-2; F58H1.1) from Caenorhabditis elegans and have detected its activity in both native and recombinant forms. For comparative studies, the two other cDNAs encoding class II mannosidases aman-1 (F55D10.1) and aman-3 (F48C1.1) were cloned; the corresponding enzymes are, respectively, a putative lysosomal alpha-mannosidase and a Co(II)-activated alpha-mannosidase. The analysis of the N-glycan structures of an aman-2 mutant strain demonstrates that the absence of alpha-mannosidase II activity results in a shift to structures not seen in wild-type worms (e.g. N-glycans with the composition Hex(5-7)HexNAc(2-3)Fuc(2)Me) and an accumulation of hybrid oligosaccharides. Paucimannosidic glycans are almost absent from aman-2 worms, indicative also of a general lack of alpha-mannosidase III activity. We hypothesize that there is a tremendous flexibility in the glycosylation pathway of C. elegans that does not impinge, under standard laboratory conditions, on the viability of worms with glycotypes very unlike the wild-type pattern.
Asunto(s)
Caenorhabditis elegans/enzimología , Aparato de Golgi/enzimología , Polisacáridos/química , alfa-Manosidasa/fisiología , Animales , Glicosilación , Mutación , Polisacáridos/biosíntesis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , alfa-Manosidasa/genéticaRESUMEN
Core alpha1,6-fucosylation is a conserved feature of animal N-linked oligosaccharides being present in both invertebrates and vertebrates. To prove that the enzymatic basis for this modification is also evolutionarily conserved, cDNAs encoding the catalytic regions of the predicted Caenorhabditis elegans and Drosophila melanogaster homologs of vertebrate alpha1,6-fucosyltransferases (E.C. 2.4.1.68) were engineered for expression in the yeast Pichia pastoris. Recombinant forms of both enzymes were found to display core fucosyltransferase activity as shown by a variety of methods. Unsubstituted nonreducing terminal GlcNAc residues appeared to be an obligatory feature of the substrate for the recombinant Caenorhabditis and Drosophila alpha1,6-fucosyltransferases, as well as for native Caenorhabditis and Schistosoma mansoni core alpha1,6-fucosyltransferases. On the other hand, these alpha1,6-fucosyltransferases could not act on N-glycopeptides already carrying core alpha1,3-fucose residues, whereas recombinant Drosophila and native Schistosoma core alpha1,3-fucosyltransferases were able to use core alpha1,6-fucosylated glycans as substrates. Lewis-type fucosylation was observed with native Schistosoma extracts and could take place after core alpha1,3-fucosylation, whereas prior Lewis-type fucosylation precluded the action of the Schistosoma core alpha1,3-fucosyltransferase. Overall, we conclude that the strict order of fucosylation events, previously determined for fucosyltransferases in crude extracts from insect cell lines (core alpha1,6 before core alpha1,3), also applies for recombinant Drosophila core alpha1,3- and alpha1,6-fucosyltransferases as well as for core fucosyltransferases in schistosomal egg extracts.