Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169370, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104825

RESUMEN

Catchment-scale understanding of water and contaminant fluxes through all pathways is essential to address land use and climate change impacts on freshwater. However, few options exist to obtain this understanding for the many catchments worldwide for which streamflow and low-frequency water chemistry, but little other data exists. We applied the Bayesian chemistry-assisted hydrograph separation and load partitioning model (BACH) to 47 catchments with widely differing characteristics. As BACH relies on concentration differences between pathways, chemodynamic behaviour of a water constituent indicates its likely suitability as tracer. Typical tracers (e.g. silica, chloride) were unavailable, but Electrical Conductivity and a few monitored nutrients proved chemodynamic in most catchments. Using one of two tracer combinations (Total Nitrogen + Electrical Conductivity, Total Nitrogen + Total Phosphorus) allowed in 85 % of the catchments to estimate streamflow contributions by near-surface (NS), shallow groundwater (SGW), and deep groundwater (DGW) pathways and pathway-specific tracer concentrations and yields with acceptable confidence. In 46 catchments, at least two pathways contributed ≥20 % of the streamflow, and all three ≥20 % in 12 catchments, cautioning against the notion of a single 'dominant' pathway. In contrast to hydrometric hydrograph separation, BACH allows differentiation between 'young' (NS + SGW) and 'old' (DGW) water, which is crucial for the understanding of pollution in catchments with strong temporal gradients in land use intensity. Consistent with generally increasing land use intensity, and groundwater denitrification occurring in some catchments, Total Nitrogen (TN) concentrations were in most catchments higher in NS and SGW compared to DGW. In most catchments, the greatest fraction of the TN yield was conveyed by SGW (≈ 40-90 %). Exceptions were wet and hilly catchments under bush, where the NS transferred most of the very low yields, and three young volcanic catchments where the DGW transferred the majority of the yield due to particularly high DGW flow contributions.

2.
Front Microbiol ; 15: 1392090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808273

RESUMEN

Introduction: Through the combined use of two nitrification inhibitors, Dicyandiamide (DCD) and chlorate with nitrogen amendment, this study aimed to investigate the contribution of comammox Nitrospira clade B, ammonia oxidizing bacteria (AOB) and archaea (AOA) to nitrification in a high fertility grassland soil, in a 90-day incubation study. Methods: The soil was treated with nitrogen (N) at three levels: 0 mg-N kg-1 soil, 50 mg-N kg-1 soil, and 700 mg-N kg-1 soil, with or without the two nitrification inhibitors. The abundance of comammox Nitrospira, AOA, AOB, and nitrite oxidising bacteria (NOB) was measured using qPCR. The comammox Nitrospira community structure was assessed using Illumina sequencing. Results and Discussion: The results showed that the application of chlorate inhibited the oxidation of both NH4+ and NO2- in all three nitrogen treatments. The application of chlorate significantly reduced the abundance of comammox Nitrospira amoA and nxrB genes across the 90-day experimental period. Chlorate also had a significant effect on the beta diversity (Bray-Curtis dissimilarity) of the comammox Nitrospira clade B community. Whilst AOB grew in response to the N substrate additions and were inhibited by both inhibitors, AOA showed litle or no response to either the N substrate or inhibitor treatments. In contrast, comammox Nitrospira clade B were inhibited by the high ammonium concentrations released from the urine substrates. These results demonstrate the differential and niche responses of the three ammonia oxidising communities to N substrate additions and nitrification inhibitor treatments. Further research is needed to investigate the specificity of the two inhibitors on the different ammonia oxidising communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA