RESUMEN
Identifying cooperating modules of driver alterations can provide insights into cancer etiology and advance the development of effective personalized treatments. We present Cancer Rule Set Optimization (CRSO) for inferring the combinations of alterations that cooperate to drive tumor formation in individual patients. Application to 19 TCGA cancer types revealed a mean of 11 core driver combinations per cancer, comprising 2-6 alterations per combination and accounting for a mean of 70% of samples per cancer type. CRSO is distinct from methods based on statistical co-occurrence, which we demonstrate is a suboptimal criterion for investigating driver cooperation. CRSO identified well-studied driver combinations that were not detected by other approaches and nominated novel combinations that correlate with clinical outcomes in multiple cancer types. Novel synergies were identified in NRAS-mutant melanomas that may be therapeutically relevant. Core driver combinations involving NFE2L2 mutations were identified in four cancer types, supporting the therapeutic potential of NRF2 pathway inhibition. CRSO is available at https://github.com/mikekleinsgit/CRSO/.
Asunto(s)
Mutación/genética , Neoplasias/genética , Simulación por Computador , Variaciones en el Número de Copia de ADN/genética , Bases de Datos Genéticas , Genes Relacionados con las Neoplasias , HumanosRESUMEN
Zwang et al. (2011) have identified outputs of two EGF pulses that commit cells to cycle. The first induces components for lipid biosynthesis and sets up an inhibitory latch through p53. The second works through ERK to EGR1 and releases the latch to promote restriction point traverse.
RESUMEN
In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/patología , Calcio/farmacología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Endocitosis/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Immunoblotting , Espacio Intracelular/metabolismo , Neoplasias Mamarias Animales , Ratones , Unión Proteica , Transporte de Proteínas , Análisis de SupervivenciaRESUMEN
A promising alternative to address the problem of acquired drug resistance is to rely on combination therapies. Identification of the right combinations is often accomplished through trial and error, a labor and resource intensive process whose scale quickly escalates as more drugs can be combined. To address this problem, we present a broad computational approach for predicting synergistic combinations using easily obtainable single drug efficacy, no detailed mechanistic understanding of drug function, and limited drug combination testing. When applied to mutant BRAF melanoma, we found that our approach exhibited significant predictive power. Additionally, we validated previously untested synergy predictions involving anticancer molecules. As additional large combinatorial screens become available, this methodology could prove to be impactful for identification of drug synergy in context of other types of cancers.
Asunto(s)
Combinación de Medicamentos , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico , Antineoplásicos , Línea Celular Tumoral , Biología Computacional , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Modelos Teóricos , Proteínas Proto-Oncogénicas B-raf/genéticaRESUMEN
BACKGROUND: Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate management of cancer. Although many methods have been developed to identify pathways perturbed in tumors, the results are often not generalizable across independent datasets due to the presence of platform/batch effects. There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways in individual samples. RESULTS: We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the normative state of a pathway based on the relative rankings of gene expression levels across a set of reference samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in comparison to other methods. CONCLUSIONS: GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples using a non-competitive approach that is fundamentally distinct from popular enrichment-based methods. GRAPE may be an appropriate tool for researchers seeking to identify individual samples displaying abnormal gene-set behavior as well as to explore differences in the consensus gene-set behavior of groups of samples. GRAPE is available in R for download at https://CRAN.R-project.org/package=GRAPE .
Asunto(s)
Perfilación de la Expresión Génica/métodos , Transcriptoma , Interfaz Usuario-Computador , Humanos , Internet , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología , Máquina de Vectores de Soporte , Análisis de SupervivenciaRESUMEN
In this issue of Molecular Cell, Usui et al. (2009) show that Mec1-phosphorylated Rad9 SCD interacts with the BRCT domain, promoting oligomerization. This sustains the DNA damage checkpoint and is suppressed by Rad53 phosphorylation in a negative feedback circuit.
Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Modelos Biológicos , Fosforilación , Estructura Terciaria de ProteínaRESUMEN
INTRODUCTION: The recently identified claudin-low subtype of breast cancer is enriched for cells with stem-like and mesenchymal-like characteristics. This subtype is most often triple-negative (lacking the estrogen and progesterone receptors (ER, PR) as well as lacking epidermal growth factor 2 (HER2) amplification) and has a poor prognosis. There are few targeted treatment options available for patients with this highly aggressive type of cancer. METHODS: Using a high throughput inhibitor screen, we identified high expression of glioma-associated oncogene homolog 1 (GLI1), the effector molecule of the hedgehog (Hh) pathway, as a critical determinant of cell lines that have undergone an epithelial to mesenchymal transition (EMT). RESULTS: High GLI1 expression is a property of claudin-low cells and tumors and correlates with markers of EMT and breast cancer stem cells. Knockdown of GLI1 expression in claudin-low cell lines resulted in reduced cell viability, motility, clonogenicity, self-renewal, and reduced tumor growth of orthotopic xenografts. We observed non-canonical activation of GLI1 in claudin-low and EMT cell lines, and identified crosstalk with the NFκB pathway. CONCLUSIONS: This work highlights the importance of GLI1 in the maintenance of characteristics of metastatic breast cancer stem cells. Remarkably, treatment with an inhibitor of the NFκB pathway reproducibly reduces GLI1 expression and protein levels. We further provide direct evidence for the binding of the NFκB subunit p65 to the GLI1 promoter in both EMT and claudin-low cell lines. Our results uncover crosstalk between NFκB and GLI1 signals and suggest that targeting these pathways may be effective against the claudin-low breast cancer subtype.
Asunto(s)
Neoplasias de la Mama/metabolismo , Claudinas/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Expresión Génica , Compuestos Heterocíclicos con 2 Anillos/farmacología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cross-Talk , Transducción de Señal , Tiazoles/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1RESUMEN
INTRODUCTION: Human Epidermal Growth Factor Receptor (ERBB4/HER4) belongs to the Epidermal Growth Factor receptor/ERBB family of receptor tyrosine kinases. While ERBB1, ERBB2 and ERBB3 are often overexpressed or activated in breast cancer, and are oncogenic, the role of ERBB4 in breast cancer is uncertain. Some studies suggest a tumor suppressor role of ERBB4, while other reports suggest an oncogenic potential. Alternative splicing of ERBB4 yields four major protein products, these spliced isoforms differ in the extracellular juxtamembrane domain (JM-a versus JM-b) and cytoplasmic domain (CYT-1 versus CYT-2). Two of these isoforms, JM-a CYT-1 and JM-a CYT-2, are expressed in the mammary gland. Failure to account for isoform-specific functions in previous studies may account for conflicting reports on the role of ERBB4 in breast cancer. METHODS: We have produced mouse mammary tumour virus (MMTV) -ERBB4 transgenic mice to evaluate potential developmental and carcinogenic changes associated with full length (FL) JM-a ERBB4 CYT-1 versus ERBB4 CYT-2. Mammary tissue was isolated from transgenic mice and sibling controls at various developmental stages for whole mount analysis, RNA extraction, and immunohistochemistry. To maintain maximal ERBB4 expression, transgenic mice were bred continuously for a year after which mammary glands were isolated and analyzed. RESULTS: Overexpressing FL CYT-1 isoform resulted in suppression of mammary ductal morphogenesis which was accompanied by decreased number of mammary terminal end buds (TEBs) and Ki-67 positive cells within TEBs, while FL CYT-2 isoform had no effect on ductal growth in pubescent mice. The suppressive ductal phenotype in CYT-1 mice disappeared after mid-pregnancy, and subsequent developmental stages showed no abnormality in mammary gland morphology or function in CYT-1 or CYT-2 transgenic mice. However, sustained expression of FL CYT-1 isoform resulted in formation of neoplastic mammary lesions, suggesting a potential oncogenic function for this isoform. CONCLUSIONS: Together, we present isoform-specific roles of ERBB4 during puberty and early pregnancy, and reveal a novel oncogenic property of CYT-1 ERBB4. The results may be exploited to develop better therapeutic strategies in breast cancer.
Asunto(s)
Carcinogénesis/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Experimentales/genética , Embarazo/genética , Isoformas de Proteínas/genética , Receptor ErbB-4/genética , Empalme Alternativo , Animales , Carcinogénesis/metabolismo , Femenino , Humanos , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Virus del Tumor Mamario del Ratón , Ratones , Ratones Transgénicos , Embarazo/metabolismo , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/metabolismoRESUMEN
MDC1 is a key mediator of the DNA-damage response in mammals with several phosphorylation-dependent protein interaction domains. The function of its N-terminal forkhead-associated (FHA) domain remains elusive. Here, we show with structural, biochemical and cellular data that the FHA domain mediates phosphorylation-dependent dimerization of MDC1 in response to DNA damage. Crystal structures of the FHA domain reveal a face-to-face dimer with pseudo-dyad symmetry. We found that the FHA domain recognizes phosphothreonine 4 (pT4) at the N-terminus of MDC1 and determined its crystal structure in complex with a pT4 peptide. Biochemical analysis further revealed that in the dimer, the FHA domain binds in trans to pT4 from the other subunit, which greatly stabilizes the otherwise unstable dimer. We show that T4 is phosphorylated primarily by ATM upon DNA damage. MDC1 mutants with the FHA domain deleted or impaired in its ability to dimerize formed fewer foci at DNA-damage sites, but the localization defect was largely rescued by an artificial dimerization module, suggesting that dimerization is the primary function of the MDC1 FHA domain. Our results suggest a novel mechanism for the regulation of MDC1 function through T4 phosphorylation and FHA-mediated dimerization.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Nucleares/química , Fosfotreonina/química , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins. These substrates represent a broad spectrum of different biochemical functions and cellular roles. Distinct sets of substrates were recognized by each protein kinase, including closely related kinases of the protein kinase A family and four cyclin-dependent kinases that vary only in their cyclin subunits. Although many substrates reside in the same cellular compartment or belong to the same functional category as their phosphorylating kinase, many others do not, indicating possible new roles for several kinases. Furthermore, integration of the phosphorylation results with protein-protein interaction and transcription factor binding data revealed novel regulatory modules. Our phosphorylation results have been assembled into a first-generation phosphorylation map for yeast. Because many yeast proteins and pathways are conserved, these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.
Asunto(s)
Proteínas Fúngicas/metabolismo , Análisis por Matrices de Proteínas , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Levaduras/metabolismo , Células Eucariotas/metabolismo , Proteínas Fúngicas/química , Fosforilación , Proteínas Quinasas/clasificación , Transporte de Proteínas , Proteómica , Reproducibilidad de los Resultados , Especificidad por Sustrato , Levaduras/enzimologíaRESUMEN
The effect of scheduling of targeted therapy combinations on drug resistance is underexplored in triple-negative breast cancer (TNBC). TNBC constitutes heterogeneous cancer cell populations the composition of which can change dynamically during treatment resulting in the selection of resistant clones with a fitness advantage. We evaluated crizotinib (ALK/MET inhibitor) and navitoclax (ABT-263; Bcl-2/Bcl-xL inhibitor) combinations in a large design consisting of 696 two-cycle sequential and concomitant treatment regimens with varying treatment dose, duration, and drug holiday length over a 26-day period in MDA-MB-231 TNBC cells and found that patterns of resistance depend on the schedule and sequence in which the drugs are given. Further, we tracked the clonal dynamics and mechanisms of resistance using DNA-integrated barcodes and single-cell RNA sequencing. Our study suggests that longer formats of treatment schedules in vitro screening assays are required to understand the effects of resistance and guide more realistically in vivo and clinical studies.
RESUMEN
Acquired resistance to HER2-targeted therapies occurs frequently in HER2+ breast tumors and new strategies for overcoming resistance are needed. Here, we report that resistance to trastuzumab is reversible, as resistant cells regained sensitivity to the drug after being cultured in drug-free media. RNA-sequencing analysis showed that cells resistant to trastuzumab or trastuzumab + pertuzumab in combination increased expression of oxidative phosphorylation pathway genes. Despite minimal changes in mitochondrial respiration, these cells exhibited increased expression of ATP synthase genes and selective dependency on ATP synthase function. Resistant cells were sensitive to inhibition of ATP synthase by oligomycin A, and knockdown of ATP5J or ATP5B, components of ATP synthase complex, rendered resistant cells responsive to a low dose of trastuzumab. Furthermore, combining ATP synthase inhibitor oligomycin A with trastuzumab led to regression of trastuzumab-resistant tumors in vivo. In conclusion, we identify a novel vulnerability of cells with acquired resistance to HER2-targeted antibody therapies and reveal a new therapeutic strategy to overcome resistance. SIGNIFICANCE: These findings implicate ATP synthase as a novel potential target for tumors resistant to HER2-targeted therapies.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Receptor ErbB-2/antagonistas & inhibidores , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oligomicinas/administración & dosificación , Trastuzumab/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Gene amplification is among the most common genetic abnormalities that cause cancer. One of the most clinically important gene amplifications in human cancer causes extensive reduplication of ERBB2. A variety of cancers also occasionally harbor somatic mutations in ERBB2. Gene amplification and activating mutations both have predictive value for clinical response to targeted inhibitors. Since the number of gene copies in an amplicon may exceed 100, and since amplicons may encompass multiple genes, high-resolution analysis of gene amplifications poses considerable technical challenges. We have overcome this obstacle by using emulsion-based resequencing to determine the sequence of many independently-amplified individual DNA molecules in parallel. We used this high throughput sequencing technology to analyze ERBB2 mutational status in five ERBB2 amplified cell lines (four breast, one ovarian) and two breast tumors. Genomic DNA was isolated and the 28 exons of ERBB2 were independently amplified. Amplicons were then pooled at equimolar ratios, subjected to emulsion PCR (emPCR) and finally to picotiter plate pyrosequencing. High-quality sequence data were obtained for all amplicons analyzed and no activating mutations within ERBB2 were identified. Although we did not find activating mutations within the multiple copies of ERBB2 in these samples, the results establish the utility of this technology as a feasible and cost-effective approach for high resolution analysis of amplified genes.
Asunto(s)
Neoplasias de la Mama/genética , Amplificación de Genes , Mutación/genética , Receptor ErbB-2/genética , Neoplasias de la Mama/metabolismo , Análisis Mutacional de ADN , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa , Receptor ErbB-2/metabolismo , Análisis de Secuencia de ADN , Transfección , Células Tumorales CultivadasRESUMEN
This study evaluates the use of HMG-CoA reductase inhibitors, or statins, as an adjunctive to BRAF and MEK inhibition as a treatment in melanomas and other tumors with driver mutations in the MAPK pathway. Experiments used simvastatin in conjunction with vemurafenib and selumetinib in vitro and simvastatin with vemurafenib in vivo to demonstrate additional growth abrogation beyond MAPK blockade alone. Additional studies demonstrated that statin anti-tumor effects appeared to depend on inhibition of isoprenoid synthesis given rescue with add-back of downstream metabolites. Ultimately, we concluded that statins represent a possible useful adjunctive therapy in MAPK-driven tumors when given with current approved targeted therapy.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Prenilación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Masculino , Melanoma/enzimología , Melanoma/patología , Ácido Mevalónico/metabolismo , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
Mesenchymal stem-like (MSL) breast cancers are enriched for cells with tumor reconstituting and mesenchymal characteristics. These cancers are often triple-negative and have a poor prognosis. Few effective targeted treatment options exist for patients with these cancers, and even when targeted therapies exist, resistance often arises and tumors recur, due in part to drug-tolerant persisting tumor cells with self-renewal capability. Effective treatment strategies will combine agents that target the bulk-tumor and reconstituting cells. In order to identify such a combination therapy, we conducted an inhibitor screen using 40 targeted agents at three different doses in all pairwise combinations. Checkpoint Kinase 1 (CHK1) inhibitors were identified as potent inhibitors of MSL breast cancers. When combined with a pro-apoptotic agent/B Cell Lymphoma 2 (BCL2) inhibitor, the effectiveness of the combination regimen was super-additive compared to either treatment alone and was selective for MSL cancers. Treatment of MSL breast cancer cells results in DNA damage, cell-cycle defects characterized by a prolonged S-phase, increased apoptosis and decreased colony forming abilities compared to untreated cells. These data suggest that a combination of a CHK1 and BCL2 inhibitor could be an effective treatment for patients with MSL breast cancer. Several other effective drug combinations were also identified.
RESUMEN
INTRODUCTION: The receptor ErbB3/HER3 is often over-expressed in human breast cancers, frequently in conjunction with over-expression of the proto-oncogene ERBB2/HER2/NEU. Although the prognostic/predictive value of ErbB3 expression in breast cancer is unclear, ErbB3 is known to contribute to therapeutic resistance. Understanding ErbB3 functions in the normal mammary gland will help to explain its role in cancer etiology and as a modulator of signaling responses to the mammary oncogene ERBB2. METHODS: To investigate the roles of ErbB3 in mouse mammary gland development, we transplanted mammary buds from ErbB3-/- embryos into the cleared mammary fat pads of wild-type immunocompromised mice. Effects on ductal outgrowth were analyzed at 4 weeks, 7 weeks and 20 weeks after transplantation for total ductal outgrowth, branch density, and number and area of terminal end buds. Sections of glands containing terminal end buds were analyzed for number and epithelial area of terminal end buds. Terminal end buds were also analyzed for presence of mitotic figures, apoptotic figures, BrdU incorporation, and expression of E-cadherin, P-cadherin, alpha-smooth muscle actin, and cleaved caspase-3. RESULTS: The mammary ductal trees developed from ErbB3-/- buds only partly filled the mammary fat pad. In contrast to similar experiments with ErbB2-/- mammary buds, this phenotype was maintained through adulthood, pregnancy, and parturition. In addition, and in contrast to similar work with ErbB4-/- mammary buds, lobuloalveolar development of ErbB3-/- transplanted glands was normal. The ErbB3-/- mammary outgrowth defect was associated with a decrease in the size of the terminal end buds, and with increases in branch density, in the number of terminal end buds, and in the number of luminal spaces. Proliferation rates were not affected by the lack of ErbB3, but there was an increase in apoptosis in ErbB3-/- terminal end buds. CONCLUSIONS: Endogenous ErbB3 regulates morphogenesis of mammary epithelium.
Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Morfogénesis , Receptor ErbB-3/fisiología , Actinas/metabolismo , Animales , Apoptosis/fisiología , Bromodesoxiuridina , Cadherinas/metabolismo , Caspasa 3/metabolismo , Proliferación Celular , Epitelio , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/trasplante , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso/metabolismo , Proto-Oncogenes MasRESUMEN
Greatest fitness of tumor cell subclones in patients undergoing MAPK-targeting therapies requires just-right levels of MAPK pathway signaling. New therapeutic approaches induce tumor cell death by intensifying MAPK signaling induced by inhibitor withdrawal in combination with DNA damage, or prevent selection of resistant clones with a steep fitness barrier imposed by triple combination of BRAF, MEK, and ERK inhibitors. Cancer Discov; 8(1); 20-3. ©2018 AACRSee related article by Hong et al., p. 74.
Asunto(s)
Línea Celular Tumoral , Proteínas Proto-Oncogénicas B-raf , Muerte Celular , Humanos , Sistema de Señalización de MAP Quinasas , Inhibidores de Proteínas Quinasas , Transducción de SeñalRESUMEN
The tumor suppressor gene CHK2 encodes a versatile effector serine/threonine kinase involved in responses to DNA damage. Chk2 has an amino-terminal SQ/TQ cluster domain (SCD), followed by a forkhead-associated (FHA) domain and a carboxyl-terminal kinase catalytic domain. Mutations in the SCD or FHA domain impair Chk2 checkpoint function. We show here that autophosphorylation of Chk2 produced in a cell-free system requires trans phosphorylation by a wortmannin-sensitive kinase, probably ATM or ATR. Both SQ/TQ sites and non-SQ/TQ sites within the Chk2 SCD can be phosphorylated by active Chk2. Amino acid substitutions in the SCD and the FHA domain impair auto- and trans-kinase activities of Chk2. Chk2 forms oligomers that minimally require the FHA domain of one Chk2 molecule and the SCD within another Chk2 molecule. Chk2 oligomerization in vivo increases after DNA damage, and when damage is induced by gamma irradiation, this increase requires ATM. Chk2 oligomerization is phosphorylation dependent and can occur in the absence of other eukaryotic proteins. Chk2 can cross-phosphorylate another Chk2 molecule in an oligomeric complex. Induced oligomerization of a Chk2 chimera in vivo concomitant with limited DNA damage augments Chk2 kinase activity. These results suggest that Chk2 oligomerization regulates Chk2 activation, signal amplification, and transduction in DNA damage checkpoint pathways.
Asunto(s)
Proteínas Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Sitios de Unión , Proteínas de Ciclo Celular , Sistema Libre de Células , Células Cultivadas , Quinasa de Punto de Control 2 , Daño del ADN , Proteínas de Unión al ADN , Activación Enzimática , Fibroblastos , Genes Supresores de Tumor , Humanos , Mutación , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Conejos , Radiación Ionizante , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteínas Supresoras de TumorRESUMEN
Budding yeast Rad53 is an essential protein kinase that is phosphorylated and activated in a MEC1- and TEL1-dependent manner in response to DNA damage. We studied the role of Rad53 phosphorylation through mutation of consensus phosphorylation sites for upstream kinases Mec1 and Tel1. Alanine substitution of the Rad53 amino-terminal TQ cluster region reduced viability and impaired checkpoint functions. These substitution mutations spared the basal interaction with Asf1 and the DNA damage-induced interactions with Rad9. However, they caused a decrease in DNA damage-induced Rad53 kinase activity and an impaired interaction with the protein kinase Dun1. The Dun1 FHA (Forkhead-associated) domain recognized the amino-terminal TQ cluster of Rad53 after DNA damage or replication blockade. Thus, the phosphorylation of Rad53 by upstream kinases is important not only for Rad53 activation but also for creation of an interface between Rad53 and Dun1.