Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Res ; 29(2): 193-207, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30670628

RESUMEN

Cell behaviors are dictated by epigenetic and transcriptional programs. Little is known about how extracellular stimuli modulate these programs to reshape gene expression and control cell behavioral responses. Here, we interrogated the epigenetic and transcriptional response of endothelial cells to VEGFA treatment and found rapid chromatin changes that mediate broad transcriptomic alterations. VEGFA-responsive genes were associated with active promoters, but changes in promoter histone marks were not tightly linked to gene expression changes. VEGFA altered transcription factor occupancy and the distal epigenetic landscape, which profoundly contributed to VEGFA-dependent changes in gene expression. Integration of gene expression, dynamic enhancer, and transcription factor occupancy changes induced by VEGFA yielded a VEGFA-regulated transcriptional regulatory network, which revealed that the small MAF transcription factors are master regulators of the VEGFA transcriptional program and angiogenesis. Collectively these results revealed that extracellular stimuli rapidly reconfigure the chromatin landscape to coordinately regulate biological responses.


Asunto(s)
Epigénesis Genética , Neovascularización Fisiológica/genética , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Células Cultivadas , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Humanos , Factores de Transcripción Maf/metabolismo , Masculino , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
2.
Dev Biol ; 413(2): 153-159, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26988120

RESUMEN

A subset of macrophages that reside in adult tissues originate from the fetal yolk sac, while others derive from circulating monocytes. These ontologically different macrophage subsets have distinct roles in tissue injury responses, with the embryonic population overall having beneficial activity in cardiac repair. Here we show that fetal yolk macrophages are recruited to a niche within and just below the epicardium, the mesothelial covering of the heart. The epicardium was required for establishment of yolk sac macrophages in this region of the fetal heart, and this function of epicardium depended on its expression of the transcription factor WT1. Thus, tissue-specific cues and transcriptional programs recruit or retain embryonic macrophages in their final abodes, where they help to shape organ homeostasis and injury responses.


Asunto(s)
Macrófagos/citología , Miocardio/citología , Pericardio/citología , Saco Vitelino/citología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diferenciación Celular , Linaje de la Célula , Epitelio , Glicoproteínas/metabolismo , Corazón/embriología , Macrófagos/metabolismo , Proteínas de Transporte de Membrana , Ratones , Comunicación Paracrina
3.
Am J Respir Cell Mol Biol ; 54(2): 222-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26121126

RESUMEN

The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.


Asunto(s)
Linaje de la Célula , Fibroblastos/patología , Pulmón/patología , Mesodermo/patología , Fibrosis Pulmonar/patología , Animales , Biomarcadores/metabolismo , Bleomicina , Proliferación Celular , Rastreo Celular , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Fibroblastos/metabolismo , Pulmón/metabolismo , Mesodermo/metabolismo , Ratones Transgénicos , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fenotipo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(38): 15395-400, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003143

RESUMEN

Transcriptional profiling is a useful strategy to study development and disease. Approaches to isolate RNA from specific cell types, or from specific cellular compartments, would extend the power of this strategy. Previous work has shown that isolation of genetically tagged ribosomes (translating ribosome affinity purification; TRAP) is an effective means to isolate ribosome-bound RNA selectively from transgene-expressing cells. However, widespread application of this technology has been limited by available transgenic mouse lines. Here we characterize a TRAP allele (Rosa26(fsTRAP)) that makes this approach more widely accessible. We show that endothelium-specific activation of Rosa26(fsTRAP) identifies endothelial cell-enriched transcripts, and that cardiomyocyte-restricted TRAP is a useful means to identify genes that are differentially expressed in cardiomyocytes in a disease model. Furthermore, we show that TRAP is an effective means for studying translational regulation, and that several nuclear-encoded mitochondrial genes are under strong translational control. Our analysis of ribosome-bound transcripts also shows that a subset of long intergenic noncoding RNAs are weakly ribosome-bound, but that the majority of noncoding RNAs, including most long intergenic noncoding RNAs, are ribosome-bound to the same extent as coding transcripts. Together, these data show that the TRAP strategy and the Rosa26(fsTRAP) allele will be useful tools to probe cell type-specific transcriptomes, study translational regulation, and probe ribosome binding of noncoding RNAs.


Asunto(s)
Alelos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , ARN Ribosómico/aislamiento & purificación , ARN no Traducido/genética , Ribosomas/genética , Transcriptoma/genética , Animales , Western Blotting , Cartilla de ADN/genética , Ecocardiografía , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Ribosómica L10 , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
6.
Elife ; 62017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28121289

RESUMEN

Understanding the mechanisms that regulate cell type-specific transcriptional programs requires developing a lexicon of their genomic regulatory elements. We developed a lineage-selective method to map transcriptional enhancers, regulatory genomic regions that activate transcription, in mice. Since most tissue-specific enhancers are bound by the transcriptional co-activator Ep300, we used Cre-directed, lineage-specific Ep300 biotinylation and pulldown on immobilized streptavidin followed by next generation sequencing of co-precipitated DNA to identify lineage-specific enhancers. By driving this system with lineage-specific Cre transgenes, we mapped enhancers active in embryonic endothelial cells/blood or skeletal muscle. Analysis of these enhancers identified new transcription factor heterodimer motifs that likely regulate transcription in these lineages. Furthermore, we identified candidate enhancers that regulate adult heart- or lung- specific endothelial cell specialization. Our strategy for tissue-specific protein biotinylation opens new avenues for studying lineage-specific protein-DNA and protein-protein interactions.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción , Transcripción Genética , Animales , Biotinilación , Inmunoprecipitación de Cromatina/métodos , Ratones , Procesamiento Proteico-Postraduccional , Análisis de Secuencia de ADN
7.
Nat Commun ; 8(1): 383, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851877

RESUMEN

Release of promoter-proximally paused RNA polymerase II (RNAPII) is a recently recognized transcriptional regulatory checkpoint. The biological roles of RNAPII pause release and the mechanisms by which extracellular signals control it are incompletely understood. Here we show that VEGF stimulates RNAPII pause release by stimulating acetylation of ETS1, a master endothelial cell transcriptional regulator. In endothelial cells, ETS1 binds transcribed gene promoters and stimulates their expression by broadly increasing RNAPII pause release. 34 VEGF enhances ETS1 chromatin occupancy and increases ETS1 acetylation, enhancing its binding to BRD4, which recruits the pause release machinery and increases RNAPII pause release. Endothelial cell angiogenic responses in vitro and in vivo require ETS1-mediated transduction of VEGF signaling to release paused RNAPII. Our results define an angiogenic pathway in which VEGF enhances ETS1-BRD4 interaction to broadly promote RNAPII pause release and drive angiogenesis.Promoter proximal RNAPII pausing is a rate-limiting transcriptional mechanism. Chen et al. show that this process is essential in angiogenesis by demonstrating that the endothelial master transcription factor ETS1 promotes global RNAPII pause release, and that this process is governed by VEGF.


Asunto(s)
Neovascularización Patológica , Proteína Proto-Oncogénica c-ets-1/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular , Movimiento Celular , Cromatina , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Genome Biol ; 17(1): 120, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27259512

RESUMEN

BACKGROUND: For many genes, RNA polymerase II stably pauses before transitioning to productive elongation. Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure remain poorly understood. RESULTS: Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes (pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably, in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters. CONCLUSIONS: Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian gene regulation and chromatin structure.


Asunto(s)
Histonas/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Transcripción Genética , Animales , Linaje de la Célula/genética , Cromatina/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Genoma Humano , Humanos , Ratones , ARN Polimerasa II/biosíntesis
9.
Dev Cell ; 39(4): 466-479, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27720608

RESUMEN

Binding of the transcriptional co-activator YAP with the transcription factor TEAD stimulates growth of the heart and other organs. YAP overexpression potently stimulates fetal cardiomyocyte (CM) proliferation, but YAP's mitogenic potency declines postnatally. While investigating factors that limit YAP's postnatal mitogenic activity, we found that the CM-enriched TEAD1 binding protein VGLL4 inhibits CM proliferation by inhibiting TEAD1-YAP interaction and by targeting TEAD1 for degradation. Importantly, VGLL4 acetylation at lysine 225 negatively regulated its binding to TEAD1. This developmentally regulated acetylation event critically governs postnatal heart growth, since overexpression of an acetylation-refractory VGLL4 mutant enhanced TEAD1 degradation, limited neonatal CM proliferation, and caused CM necrosis. Our study defines an acetylation-mediated, VGLL4-dependent switch that regulates TEAD stability and YAP-TEAD activity. These insights may improve targeted modulation of TEAD-YAP activity in applications from cardiac regeneration to cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corazón/crecimiento & desarrollo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Acetilación , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Vía de Señalización Hippo , Humanos , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Ratas Wistar , Factores de Transcripción de Dominio TEA , Factores de Transcripción/química , Proteínas Señalizadoras YAP
10.
PLoS One ; 10(5): e0128105, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26023924

RESUMEN

GATA4 and GATA6 are central cardiac transcriptional regulators. The postnatal, stage-specific function of the cardiac transcription factors GATA4 and GATA6 have not been evaluated. In part, this is because current Cre-loxP approaches to cardiac gene inactivation require time consuming and costly breeding of Cre-expressing and "floxed" mouse lines, often with limited control of the extent or timing of gene inactivation. We investigated the stage-specific functions of GATA4 and GATA6 in the postnatal heart by using adeno-associated virus serotype 9 to control the timing and extent of gene inactivation by Cre. Systemic delivery of recombinant, adeno-associated virus 9 (AAV9) expressing Cre from the cardiac specific Tnnt2 promoter was well tolerated and selectively and efficiently recombined floxed target genes in cardiomyocytes. AAV9:Tnnt2-Cre efficiently inactivated Gata4 and Gata6. Neonatal Gata4/6 inactivation caused severe, rapidly lethal systolic heart failure. In contrast, Gata4/6 inactivation in adult heart caused only mild systolic dysfunction but severe diastolic dysfunction. Reducing the dose of AAV9:Tnnt2-Cre generated mosaics in which scattered cardiomyocytes lacked Gata4/6. This mosaic knockout revealed that Gata4/6 are required cell autonomously for physiological cardiomyocyte growth. Our results define novel roles of GATA4 and GATA6 in the neonatal and adult heart. Furthermore, our data demonstrate that evaluation of gene function hinges on controlling the timing and extent of gene inactivation. AAV9:Tnnt2-Cre is a powerful tool for controlling these parameters.


Asunto(s)
Dependovirus/genética , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/metabolismo , Corazón/crecimiento & desarrollo , Integrasas/genética , Miocitos Cardíacos/fisiología , Animales , Animales Recién Nacidos , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Vectores Genéticos , Corazón/fisiología , Insuficiencia Cardíaca Sistólica/genética , Integrasas/administración & dosificación , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA