Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2213537120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574707

RESUMEN

Dose-limiting cardiotoxicity remains a major limitation in the clinical use of cancer chemotherapeutics. Here, we describe a role for Regulator of G protein Signaling 7 (RGS7) in chemotherapy-dependent heart damage, the demonstration for a functional role of RGS7 outside of the nervous system and retina. Though expressed at low levels basally, we observed robust up-regulation of RGS7 in the human and murine myocardium following chemotherapy exposure. In ventricular cardiomyocytes (VCM), RGS7 forms a complex with Ca2+/calmodulin-dependent protein kinase (CaMKII) supported by key residues (K412 and P391) in the RGS domain of RGS7. In VCM treated with chemotherapeutic drugs, RGS7 facilitates CaMKII oxidation and phosphorylation and CaMKII-dependent oxidative stress, mitochondrial dysfunction, and apoptosis. Cardiac-specific RGS7 knockdown protected the heart against chemotherapy-dependent oxidative stress, fibrosis, and myocyte loss and improved left ventricular function in mice treated with doxorubicin. Conversely, RGS7 overexpression induced fibrosis, reactive oxygen species generation, and cell death in the murine myocardium that were mitigated following CaMKII inhibition. RGS7 also drives production and release of the cardiokine neuregulin-1, which facilitates paracrine communication between VCM and neighboring vascular endothelial cells (EC), a maladaptive mechanism contributing to VCM dysfunction in the failing heart. Importantly, while RGS7 was both necessary and sufficient to facilitate chemotherapy-dependent cytotoxicity in VCM, RGS7 is dispensable for the cancer-killing actions of these same drugs. These selective myocyte-intrinsic and myocyte-extrinsic actions of RGS7 in heart identify RGS7 as an attractive therapeutic target in the mitigation of chemotherapy-driven cardiotoxicity.


Asunto(s)
Antineoplásicos , Cardiotoxicidad , Proteínas RGS , Animales , Humanos , Ratones , Antineoplásicos/efectos adversos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotoxicidad/metabolismo , Células Endoteliales/metabolismo , Fibrosis , Miocitos Cardíacos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
2.
J Transl Med ; 22(1): 204, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409136

RESUMEN

BACKGROUND: Prior evidence demonstrated that Regulator of G protein Signaling 6 (RGS6) translocates to the nucleolus in response to cytotoxic stress though the functional significance of this phenomenon remains unknown. METHODS: Utilizing in vivo gene manipulations in mice, primary murine cardiac cells, human cell lines and human patient samples we dissect the participation of a RGS6-nucleolin complex in chemotherapy-dependent cardiotoxicity. RESULTS: Here we demonstrate that RGS6 binds to a key nucleolar protein, Nucleolin, and controls its expression and activity in cardiomyocytes. In the human myocyte AC-16 cell line, induced pluripotent stem cell derived cardiomyocytes, primary murine cardiomyocytes, and the intact murine myocardium tuning RGS6 levels via overexpression or knockdown resulted in diametrically opposed impacts on Nucleolin mRNA, protein, and phosphorylation.RGS6 depletion provided marked protection against nucleolar stress-mediated cell death in vitro, and, conversely, RGS6 overexpression suppressed ribosomal RNA production, a key output of the nucleolus, and triggered death of myocytes. Importantly, overexpression of either Nucleolin or Nucleolin effector miRNA-21 counteracted the pro-apoptotic effects of RGS6. In both human and murine heart tissue, exposure to the genotoxic stressor doxorubicin was associated with an increase in the ratio of RGS6/Nucleolin. Preventing RGS6 induction via introduction of RGS6-directed shRNA via intracardiac injection proved cardioprotective in mice and was accompanied by restored Nucleolin/miRNA-21 expression, decreased nucleolar stress, and decreased expression of pro-apoptotic, hypertrophy, and oxidative stress markers in heart. CONCLUSION: Together, these data implicate RGS6 as a driver of nucleolar stress-dependent cell death in cardiomyocytes via its ability to modulate Nucleolin. This work represents the first demonstration of a functional role for an RGS protein in the nucleolus and identifies the RGS6/Nucleolin interaction as a possible new therapeutic target in the prevention of cardiotoxicity.


Asunto(s)
MicroARNs , Proteínas RGS , Animales , Humanos , Ratones , Cardiotoxicidad , MicroARNs/genética , Miocitos Cardíacos , Nucleolina , Proteínas RGS/genética , Transducción de Señal/fisiología
3.
FASEB J ; 37(8): e23064, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37440271

RESUMEN

Off target damage to vital organ systems is an unfortunate side effect of cancer chemotherapy and remains a major limitation to the use of these essential drugs in the clinic. Despite decades of research, the mechanisms conferring susceptibility to chemotherapy driven cardiotoxicity and hepatotoxicity remain unclear. In the livers of patients with a history of chemotherapy, we observed a twofold increase in expression of G protein regulator RGS7 and a corresponding decrease in fellow R7 family member RGS11. Knockdown of RGS7 via introduction of RGS7 shRNA via tail vein injection decreased doxorubicin-induced hepatic collagen and lipid deposition, glycogen accumulation, and elevations in ALT, AST, and triglycerides by approximately 50%. Surprisingly, a similar result could be achieved via introduction of RGS7 shRNA directly to the myocardium without impacting RGS7 levels in the liver directly. Indeed, doxorubicin-treated cardiomyocytes secrete the endocrine factors transforming growth factor ß1 (TGFß1) and TGFß superfamily binding protein follistatin-related protein 1 (FSTL1). Importantly, RGS7 overexpression in the heart was sufficient to recapitulate the impacts of doxorubicin on the liver and inhibition of TGFß1 signaling with the receptor blocker GW788388 ameliorated the effect of cardiac RGS7 overexpression on hepatic fibrosis, steatosis, oxidative stress, and cell death as well as the resultant elevation in liver enzymes. Together these data demonstrate that RGS7 controls both the release of TGFß1 from the heart and the profibrotic and pro-oxidant actions of TGFß1 in the liver and emphasize the functional significance of endocrine cardiokine signaling in the pathogenesis of chemotherapy drive multiorgan damage.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Proteínas RGS , Humanos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Transducción de Señal/fisiología , Proteínas Portadoras/metabolismo , Hígado/metabolismo , Doxorrubicina/efectos adversos , Proteínas Relacionadas con la Folistatina/metabolismo
4.
Cell Mol Life Sci ; 80(9): 255, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589751

RESUMEN

Cardiotoxicity remains a major limitation in the clinical utility of anthracycline chemotherapeutics. Regulator of G-protein Signaling 7 (RGS7) and inflammatory markers are up-regulated in the hearts of patients with a history of chemotherapy particularly those with reduced left-ventricular function. RGS7 knockdown in either the murine myocardium or isolated murine ventricular cardiac myocytes (VCM) or cultured human VCM provided marked protection against doxorubicin-dependent oxidative stress, NF-κB activation, inflammatory cytokine production, and cell death. In exploring possible mechanisms causally linking RGS7 to pro-inflammatory signaling cascades, we found that RGS7 forms a complex with acetylase Tip60 and deacetylase sirtuin 1 (SIRT1) and controls the acetylation status of the p65 subunit of NF-κB. In VCM, the detrimental impact of RGS7 could be mitigated by inhibiting Tip60 or activating SIRT1, indicating that the ability of RGS7 to modulate cellular acetylation capacity is critical for its pro-inflammatory actions. Further, RGS7-driven, Tip60/SIRT1-dependent cytokines released from ventricular cardiac myocytes and transplanted onto cardiac fibroblasts increased oxidative stress, markers of transdifferentiation, and activity of extracellular matrix remodelers emphasizing the importance of the RGS7-Tip60-SIRT1 complex in paracrine signaling in the myocardium. Importantly, while RGS7 overexpression in heart resulted in sterile inflammation, fibrotic remodeling, and compromised left-ventricular function, activation of SIRT1 counteracted the detrimental impact of RGS7 in heart confirming that RGS7 increases acetylation of SIRT1 substrates and thereby drives cardiac dysfunction. Together, our data identify RGS7 as an amplifier of inflammatory signaling in heart and possible therapeutic target in chemotherapeutic drug-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Proteínas RGS , Humanos , Animales , Ratones , Acetilación , FN-kappa B , Sirtuina 1/genética , Arritmias Cardíacas , Miocitos Cardíacos , Proteínas RGS/genética
5.
Mol Psychiatry ; 27(12): 4869-4880, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36117213

RESUMEN

Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Dopamina , Animales , Femenino , Masculino , Ratones , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno del Espectro Autista/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Dopamina/metabolismo , Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Transducción de Señal
6.
J Neurosci ; 38(23): 5302-5312, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29739866

RESUMEN

Disruptions of dopamine (DA) signaling contribute to a broad spectrum of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), addiction, bipolar disorder, and schizophrenia. Despite evidence that risk for these disorders derives from heritable variation in DA-linked genes, a better understanding is needed of the molecular and circuit context through which gene variation drives distinct disease traits. Previously, we identified the DA transporter (DAT) variant Val559 in subjects with ADHD and established that the mutation supports anomalous DAT-mediated DA efflux (ADE). Here, we demonstrate that region-specific contributions of D2 autoreceptors (D2AR) to presynaptic DA homeostasis dictate the consequences of Val559 expression in adolescent male mice. We show that activation of D2ARs in the WT dorsal striatum (DS), but not ventral striatum (VS), increases DAT phosphorylation and surface trafficking. In contrast, the activity of tyrosine hydroxylase (TH) is D2AR-dependent in both regions. In the DS but not VS of Val559 mice, tonic activation of D2ARs drives a positive feedback loop that promotes surface expression of efflux-prone DATs, raising extracellular DA levels and overwhelming DAT-mediated DA clearance capacity. Whereas D2ARs that regulate DAT are tonically activated in the Val559 DS, D2ARs that regulate TH become desensitized, allowing maintenance of cytosolic DA needed to sustain ADE. Together with prior findings, our results argue for distinct D2AR pools that regulate DA synthesis versus DA release and inactivation and offer a clear example of how the penetrance of gene variation can be limited to a subset of expression sites based on differences in intersecting regulatory networks.SIGNIFICANCE STATEMENT Altered dopamine (DA) signaling has been linked to multiple neuropsychiatric disorders. In an effort to understand and model disease-associated DAergic disturbances, we previously screened the DA transporter (DAT) in subjects with attention-deficit hyperactivity disorder (ADHD) and identified multiple, functionally impactful, coding variants. One of these variants, Val559, supports anomalous DA efflux (ADE) and in transgenic mice leads to changes in locomotor patterns, psychostimulant sensitivity, and impulsivity. Here, we show that the penetrance of Val559 ADE is dictated by region-specific differences in how presynaptic D2-type autoreceptors (D2ARs) constrain DA signaling, biasing phenotypic effects to dorsal striatal projections. The Val559 model illustrates how the impact of genetic variation underlying neuropsychiatric disorders can be shaped by the differential engagement of synaptic regulatory mechanisms.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Dopamina/metabolismo , Penetrancia , Receptores de Dopamina D2/metabolismo , Animales , Autorreceptores/genética , Autorreceptores/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Variación Genética , Homeostasis/fisiología , Masculino , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Ratones Transgénicos
7.
Proc Natl Acad Sci U S A ; 112(7): E786-95, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646431

RESUMEN

Alcohol is the most commonly abused drug worldwide, and chronic alcohol consumption is a major etiological factor in the development of multiple pathological sequelae, including alcoholic cardiomyopathy and hepatic cirrhosis. Here, we identify regulator of G protein signaling 6 (RGS6) as a critical regulator of both alcohol-seeking behaviors and the associated cardiac and hepatic morbidities through two mechanistically divergent signaling actions. RGS6(-/-) mice consume less alcohol when given free access and are less susceptible to alcohol-induced reward and withdrawal. Antagonism of GABA(B) receptors or dopamine D2 receptors partially reversed the reduction in alcohol consumption in RGS6(-/-) animals. Strikingly, dopamine transporter inhibition completely restored alcohol seeking in mice lacking RGS6. RGS6 deficiency was associated with alterations in the expression of genes controlling dopamine (DA) homeostasis and a reduction in DA levels in the striatum. Taken together, these data implicate RGS6 as an essential regulator of DA bioavailability. RGS6 deficiency also provided dramatic protection against cardiac hypertrophy and fibrosis, hepatic steatosis, and gastrointestinal barrier dysfunction and endotoxemia when mice were forced to consume alcohol. Although RGS proteins canonically function as G-protein regulators, RGS6-dependent, alcohol-mediated toxicity in the heart, liver, and gastrointestinal tract involves the ability of RGS6 to promote reactive oxygen species-dependent apoptosis, an action independent of its G-protein regulatory capacity. We propose that inhibition of RGS6 might represent a viable means to reduce alcohol cravings and withdrawal in human patients, while simultaneously protecting the heart and liver from further damage upon relapse.


Asunto(s)
Consumo de Bebidas Alcohólicas , Conducta Animal , Proteínas RGS/fisiología , Recompensa , Animales , Apoptosis/fisiología , Cardiomiopatías/etiología , Condicionamiento Operante , Ratones , Ratones Noqueados , Proteínas RGS/genética
8.
FASEB J ; 28(4): 1735-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421401

RESUMEN

Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents.


Asunto(s)
Adenilil Ciclasas/metabolismo , Ansiedad/fisiopatología , Depresión/fisiopatología , Proteínas RGS/fisiología , Receptor de Serotonina 5-HT1A/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Animales Recién Nacidos , Ansiedad/genética , Ansiedad/prevención & control , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Depresión/genética , Depresión/prevención & control , Femenino , Fluvoxamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Immunoblotting , Inmunohistoquímica , Masculino , Ratones , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Proteínas RGS/deficiencia , Proteínas RGS/genética , Serotonina/metabolismo , Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
9.
Basic Clin Pharmacol Toxicol ; 134(2): 206-218, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37987120

RESUMEN

Aberrant dopamine (DA) signalling has been implicated in various neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), schizophrenia, bipolar disorder (BPD) and addiction. The availability of extracellular DA is sculpted by the exocytotic release of vesicular DA and subsequent transporter-mediated clearance, rendering the presynaptic DA transporter (DAT) a crucial regulator of DA neurotransmission. D2-type DA autoreceptors (D2ARs) regulate multiple aspects of DA homeostasis, including (i) DA synthesis, (ii) vesicular release, (iii) DA neuron firing and (iv) the surface expression of DAT and DAT-mediated DA clearance. The DAT Val559 variant, identified in boys with ADHD or ASD, as well as in a girl with BPD, supports anomalous DA efflux (ADE), which we have shown drives tonic activation of D2ARs. Through ex vivo and in vivo studies of the DAT Val559 variant using transgenic knock-in mice, we have uncovered a circuit and sex-specific capacity of D2ARs to regulate DAT, which consequently disrupts DA signalling and behaviour differently in males and females. Our studies reveal the ability of the construct-valid DAT Val559 model to elucidate endogenous mechanisms that support DA signalling, findings that may be of translational and/or therapeutic importance.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Humanos , Masculino , Ratones , Animales , Femenino , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/genética , Ratones Transgénicos , Transducción de Señal
10.
iScience ; 27(4): 109523, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38577103

RESUMEN

Fabrication of stimuli-responsive superstructure capable of delivering chemotherapeutics directly to the cancer cell by sparing healthy cells is crucial. Herein, we developed redox-responsive hollow spherical assemblies through self-assembly of disulfide-linked cysteine-diphenylalanine (SN). These fluorescent hollow spheres display intrinsic green fluorescence, are proteolytically stable and biocompatible, and allow for real-time monitoring of their intracellular entry. The disulfide bond facilitates selective degradation in the presence of high glutathione (GSH) concentrations, prevalent in cancer cells. We achieved efficient encapsulation (68.72%) of the anticancer drug doxorubicin (Dox) and demonstrated GSH-dependent, redox-responsive drug release within cancerous cells. SN-Dox exhibited a 20-fold lower effective concentration (2.5 µM) for compromising breast cancer cell viability compared to non-malignant cells (50 µM). The ability of SN-Dox to initiate DNA damage signaling and trigger apoptosis was comparable to that of the unencapsulated drug. Our findings highlight the potential of SN for creating site-specific drug delivery vehicles for sustained therapeutic release.

11.
RSC Chem Biol ; 5(3): 236-248, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38456034

RESUMEN

In addition to their classical role in ATP generation, mitochondria also contribute to Ca2+ buffering, free radical production, and initiation of programmed cell death. Mitochondrial dysfunction has been linked to several leading causes of morbidity and mortality worldwide including neurodegenerative, metabolic, and cardiovascular diseases as well as several cancer subtypes. Thus, there is growing interest in developing drug-delivery vehicles capable of shuttling therapeutics directly to the mitochondria. Here, we functionalized the conventional 10,12-pentacosadiynoic acid/1,2-dimyristoyl-sn-glycero-3-phosphocholine (PCDA/DMPC)-based liposome with a mitochondria-targeting triphenylphosphonium (TPP) cationic group. A fluorescent dansyl dye (DAN) group was also included for tracking mitochondrial drug uptake. The resultant PCDA-TPP and PCDA-DAN conjugates were incorporated into a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based lipid bilayer, and these modified liposomes (Lip-DT) were studied for their cellular toxicity, mitochondrial targeting ability, and efficacy in delivering the drug Doxorubicin (Dox) to human colorectal carcinoma (HCT116) and human breast (MCF7) cancer cells in vitro. This Lip-DT-Dox exhibited the ability to shuttle the encapsulated drug to the mitochondria of cancer cells and triggered oxidative stress, mitochondrial dysfunction, and apoptosis. The ability of Lip-DT-Dox to trigger cellular toxicity in both HCT116 and MCF7 cancer cells was comparable to the known cell-killing actions of the unencapsulated drug (Dox). The findings in this study reveal a promising approach where conventional liposome-based drug delivery systems can be rendered mitochondria-specific by incorporating well-known mitochondriotropic moieties onto the surface of the liposome.

12.
Carcinogenesis ; 34(8): 1747-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23598467

RESUMEN

Breast cancer is a large global health burden and the most frequently diagnosed malignancy in women worldwide. Here, we utilize RGS6(-/-) mice to interrogate the role of regulator of G protein signaling 6 (RGS6), localized to the ductal epithelium in mouse and human breast, as a novel tumor suppressor in vivo. RGS6(-/-) mice exhibit accelerated 7,12-dimethylbenza[α]anthracene (DMBA)-induced tumor initiation and progression, as well as decreased overall survival. Analysis of carcinogenic aberrations in the mammary glands of DMBA-treated mice revealed a failure of the DNA damage response concurrent with augmented oncogenesis in RGS6(-/-) animals. Furthermore, RGS6 suppressed cell growth induced by either human epidermal growth factor receptor 2 or estrogen receptor activation in both MCF-7 breast cancer cells and mammary epithelial cells (MECs). MECs isolated from RGS6(-/-) mice also showed a deficit in DMBA-induced ATM/p53 activation, reactive oxygen species generation and apoptosis confirming that RGS6 is required for effective activation of the DNA damage response in these cells, a critical countermeasure against carcinogen-mediated genotoxic stress. The ability of RGS6 to simultaneously enhance DNA-damage-induced apoptotic signaling and suppress oncogenic cell growth likely underlie the accelerated tumorigenesis and cellular transformation observed in DMBA-treated RGS6(-/-) mice and isolated MECs, respectively. Unsurprisingly, spontaneous tumor formation was also seen in old female RGS6(-/-) but not in wild-type mice. Our finding that RGS6 is downregulated in all human breast cancer subtypes independent of their molecular classification indicates that obtaining a means to restore the growth suppressive and pro-apoptotic actions of RGS6 in breast might be a viable means to treat a large spectrum of breast tumors.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas RGS/genética , 9,10-Dimetil-1,2-benzantraceno/farmacología , Animales , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Daño del ADN/genética , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Proteínas RGS/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
13.
J Biol Chem ; 287(7): 4972-81, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22179605

RESUMEN

γ-Aminobutyric acid (GABA) release from inhibitory interneurons located within the cerebellar cortex limits the extent of neuronal excitation in part through activation of metabotropic GABA(B) receptors. Stimulation of these receptors triggers a number of downstream signaling events, including activation of GIRK channels by the Gßγ dimer resulting in membrane hyperpolarization and inhibition of neurotransmitter release from presynaptic sites. Here, we identify RGS6, a member of the R7 subfamily of RGS proteins, as a key regulator of GABA(B)R signaling in cerebellum. RGS6 is enriched in the granule cell layer of the cerebellum along with neuronal GIRK channel subunits 1 and 2 where RGS6 forms a complex with known binding partners Gß(5) and R7BP. Mice lacking RGS6 exhibit abnormal gait and ataxia characterized by impaired rotarod performance improved by treatment with a GABA(B)R antagonist. RGS6(-/-) mice administered baclofen also showed exaggerated motor coordination deficits compared with their wild-type counterparts. Isolated cerebellar neurons natively expressed RGS6, GABA(B)R, and GIRK channel subunits, and cerebellar granule neurons from RGS6(-/-) mice showed a significant delay in the deactivation kinetics of baclofen-induced GIRK channel currents. These results establish RGS6 as a key component of GABA(B)R signaling and represent the first demonstration of an essential role for modulatory actions of RGS proteins in adult cerebellum. Dysregulation of RGS6 expression in human patients could potentially contribute to loss of motor coordination and, thus, pharmacological manipulation of RGS6 levels might represent a viable means to treat patients with ataxias of cerebellar origin.


Asunto(s)
Cerebelo/metabolismo , Locomoción , Proteínas del Tejido Nervioso/metabolismo , Proteínas RGS/metabolismo , Receptores de GABA-B/metabolismo , Transducción de Señal , Animales , Baclofeno/farmacología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Cerebelo/patología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Agonistas de Receptores GABA-B/farmacología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Humanos , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas RGS/genética , Receptores de GABA-B/genética
14.
Int J Pharm Pract ; 31(6): 608-616, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37823732

RESUMEN

The general practice pharmacist (GPP) role in Australia is evolving. A pilot GPP model of care developed to optimize medicines for patients at risk of medicine-related harm was evaluated. The aims of this study were 2-fold: to evaluate the GPP model of care on medicines optimization, with a focus on deprescribing, in a population at risk of harm due to their medicines, or clinical condition, and to explore the perspectives of study participants. This single practice study involved two phases. Phase 1 (September 2019-May 2020): at risk patients were referred to the GPP for medication reconciliation, recommendations for optimization, and when appropriate, deprescribing support, especially for opioids. Medication plans were developed with patients, GPs, and the GPP. Quantitative data collected from patient records included demographics, discrepancies, medicines reviewed, GPP recommendations and uptake, and medicines deprescribed. Opioid-related data included dose changes from baseline, at 6 and 9 months, standardized to oral morphine equivalents. Descriptive statistics were used for analysis. Phase 2 (7-21 September 2020): qualitative evaluation using semi-structured interviews was undertaken, to explore the perspectives of GP and patient participants of the GPP model of care. Interview data were thematically analysed. The study had ethical approval. Phase 1: 198 multimorbid patients with multiple medications [median = 13 (9-16)] had at least one GPP consultation (n = 243). Discrepancies were resolved through 88% of GPP consultations; deprescribing commenced or occurred in 54%. Acceptance of GPP recommendations was 86%. Opioids were the most common medicines deprescribed (42% ceased). The baseline median opioid dose [44.4 (30-90) mg] was significantly reduced at 6 months [13.5 (0-40) mg] and 9 months [7 (0-30) mg], P < .0001. Phase 2: Thematic analysis of 28 interviews (10 GPs, 3 practice personnel, 10 patients, 5 carers) identified four key themes: safer foundation for deprescribing, deprescribing opportunities recognition, benefits of embedded GPP, and a supported approach to shared decision-making. General practice provides opportunities for medicine optimization and deprescribing. This study has demonstrated a GPP model of care that achieved functional deprescribing to reduce potential harm in a population at risk and addressed recognized barriers.


Asunto(s)
Deprescripciones , Medicina General , Humanos , Farmacéuticos , Analgésicos Opioides/efectos adversos , Australia
15.
ACS Appl Bio Mater ; 6(2): 836-847, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36757106

RESUMEN

Nanodrug delivery systems (NDDs) capable of conveying chemotherapeutics directly into malignant cells without harming healthy ones are of significant interest in the field of cancer therapy. However, the development of nanostructures with the requisite biocompatibility, inherent optical properties, cellular penetration ability, encapsulation capability, and target selectivity has remained elusive. In an effort to develop cell-selective NDDs, we have synthesized a cationic tripeptide Boc-Arg-Trp-Phe-OMe (PA1), which self-assembles into well-ordered spheres in 100% aqueous medium. The inherent fluorescence properties of the peptide PA1 were shifted from the ultraviolet to the visible region by the self-assembly. These fluorescent nanostructures are proteolytically stable, photostable, and biocompatible, with characteristic blue fluorescence signals that permit us to monitor their intracellular entry in real time. We also demonstrate that these tripeptide spherical structures (TPSS) have the capacity to entrap the chemotherapeutic drug doxorubicin (Dox), shuttle the encapsulated drug within cancerous cells, and initiate the DNA damage signaling cascade, which culminates in apoptosis. Next, we functionalized the TPSS with an epithelial-cell-specific epithelial cell adhesion molecule aptamer. Aptamer-conjugated PA1 (PA1-Apt) facilitated efficient Dox delivery into the breast cancer epithelial cell line MCF7, resulting in cell death. However, cells of the human cardiomyocyte cell line AC16 were resistant to the cell killing actions of PA1-Apt. Together, these data demonstrate that not only can the self-assembly of cationic tripeptides like PA1 be exploited for efficient drug encapsulation and delivery but their unique chemistry also allows for functional modifications, which can improve the selectivity of these versatile NDDs.


Asunto(s)
Nanopartículas , Nanoestructuras , Humanos , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/química
16.
ACS Appl Bio Mater ; 6(12): 5310-5323, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37988654

RESUMEN

Platinum-based chemotherapeutic drugs are effective in killing malignant cells but often trigger drug resistance or off-target side effects. Unlike platinum, zinc is used as an endogenous cofactor for several cellular enzymes and may, thus, display increased biocompatibility. In this present study, we have rationally designed and synthesized two substituted phenanthro[9,10-d]imidazole-based ligands L1 and L2 with pyridine and quinoline substitution at the 2 position and their corresponding Zn(II) complexes; (L1)2Zn and (L2)2Zn, which are characterized by standard analytical and spectroscopic methods. (L2)2Zn, but not (L1)2Zn has intrinsic fluorescence, indicating its potential utility in imaging applications. To facilitate cellular uptake, we generated liposomal formations with a phospholipid DMPC (1,2-Dimyristoyl-sn-glycero-3-phosphocholine) through molecular self-assembly. These liposomal formulations Lip-(L1)2Zn and Lip-(L2)2Zn were able to enter breast cancer cells, induce DNA fragmentation, arrest the cell cycle at the G0/G1 phase, decrease proliferation, and promote apoptosis by activating the DNA damage response. Importantly, both Lip-(L1)2Zn and Lip-(L2)2Zn decreased the size of breast cancer cell-based spheroids, indicating they may be capable of suppressing tumor growth. Our work represents an important proof-of-concept exercise demonstrating that successful liposomal formation of phenanthro[9,10-d]imidazole-based Zn(II) complexes with inherent optical properties have great promise for the development of imaging probes and efficient anticancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Liposomas/química , Zinc/química , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Imidazoles/farmacología , Proliferación Celular
17.
Antioxid Redox Signal ; 38(1-3): 137-159, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35521658

RESUMEN

Aims: The pathophysiological mechanism(s) underlying non-alcoholic fatty liver disease (NAFLD) have yet to be fully delineated and only a single drug, peroxisome proliferator-activated receptor (PPAR) α/γ agonist saroglitazar, has been approved. Here, we sought to investigate the role of Regulator of G Protein Signaling 7 (RGS7) in hyperlipidemia-dependent hepatic dysfunction. Results: RGS7 is elevated in the livers of NAFLD patients, particularly those with severe hepatic damage, pronounced insulin resistance, and high inflammation. In the liver, RGS7 forms a unique complex with transcription factor ATF3 and histone acetyltransferase Tip60, which is implicated in NAFLD. The removal of domains is necessary for ATF3/Tip60 binding compromises RGS7-dependent reactive oxygen species generation and cell death. Hepatic RGS7 knockdown (KD) prevented ATF3/Tip60 induction, and it provided protection against fibrotic remodeling and inflammation in high-fat diet-fed mice translating to improvements in liver function. Hyperlipidemia-dependent oxidative stress and metabolic dysfunction were largely reversed in RGS7 KD mice. Interestingly, saroglitazar failed to prevent RGS7/ATF3 upregulation but it did partially restore Tip60 levels. RGS7 drives the release of particularly tumor necrosis factor α (TNFα) from isolated hepatocytes, stellate cells and its depletion reverses steatosis, oxidative stress by direct TNFα exposure. Conversely, RGS7 overexpression in the liver is sufficient to trigger oxidative stress in hepatocytes that can be mitigated via TNFα inhibition. Innovation: We discovered a novel non-canonical function for an R7RGS protein, which usually functions to regulate G protein coupled receptor (GPCR) signaling. This is the first demonstration for a functional role of RGS7 outside the retina and central nervous system. Conclusion: RGS7 represents a potential novel target for the amelioration of NAFLD. Antioxid. Redox Signal. 38, 137-159.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas RGS , Animales , Ratones , Dieta Alta en Grasa , Inflamación/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205452

RESUMEN

Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate. We established that the human DA transporter (DAT) coding variant (DAT Val559), identified in individuals with ADHD, ASD, or BPD, exhibits anomalous DA efflux (ADE) that is blocked by therapeutic amphetamines and methylphenidate. As the latter agents have high abuse liability, we exploited DAT Val559 knock-in mice to identify non-addictive agents that can normalize DAT Val559 functional and behavioral effects ex vivo and in vivo. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might offset the effects of DAT Val559. We establish that enhanced DAT Thr53 phosphorylation and increased DAT surface trafficking associated with DAT Val559 expression are mimicked by KOR agonism of wildtype preparations and rescued by KOR antagonism of DAT Val559 ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release and sex-dependent behavioral abnormalities. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.

19.
Circ Res ; 107(11): 1345-9, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20864673

RESUMEN

RATIONALE: Parasympathetic regulation of heart rate is mediated by acetylcholine binding to G protein-coupled muscarinic M2 receptors, which activate heterotrimeric G(i/o) proteins to promote G protein-coupled inwardly rectifying K(+) (GIRK) channel activation. Regulator of G protein signaling (RGS) proteins, which function to inactivate G proteins, are indispensable for normal parasympathetic control of the heart. However, it is unclear which of the more than 20 known RGS proteins function to negatively regulate and thereby ensure normal parasympathetic control of the heart. OBJECTIVE: To examine the specific contribution of RGS6 as an essential regulator of parasympathetic signaling in heart. METHODS AND RESULTS: We developed RGS6 knockout mice to determine the functional impact of loss of RGS6 on parasympathetic regulation of cardiac automaticity. RGS6 exhibited a uniquely robust expression in the heart, particularly in sinoatrial and atrioventricular nodal regions. Loss of RGS6 provoked dramatically exaggerated bradycardia in response to carbachol in mice and isolated perfused hearts and significantly enhanced the effect of carbachol on inhibition of spontaneous action potential firing in sinoatrial node cells. Consistent with a role of RGS6 in G protein inactivation, RGS6-deficient atrial myocytes exhibited a significant reduction in the time course of acetylcholine-activated potassium current (I(K)(ACh)) activation and deactivation, as well as the extent of I(K)(ACh) desensitization. CONCLUSIONS: RGS6 is a previously unrecognized, but essential, regulator of parasympathetic activation in heart, functioning to prevent parasympathetic override and severe bradycardia. These effects likely result from actions of RGS6 as a negative regulator of G protein activation of GIRK channels.


Asunto(s)
Potenciales de Acción/fisiología , Frecuencia Cardíaca/fisiología , Corazón/fisiología , Fibras Parasimpáticas Posganglionares/fisiología , Proteínas RGS/fisiología , Transducción de Señal/fisiología , Potenciales de Acción/genética , Animales , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatología , Células Cultivadas , Frecuencia Cardíaca/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas RGS/deficiencia , Proteínas RGS/genética , Receptor Muscarínico M2/fisiología , Transducción de Señal/genética , Nodo Sinoatrial/fisiología
20.
Aust J Gen Pract ; 51(7): 521-528, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35773164

RESUMEN

BACKGROUND AND OBJECTIVES: Certain 'high-risk' medicines, polypharmacy and clinical circumstances place patients at risk of harm. A project piloting an embedded general practice pharmacist (GPP) provided an opportunity to explore the influence of this role on medication management for a target 'at-risk' population, particularly those transitioning through care, from the perspectives of participants. METHOD: Qualitative data from semi-structured interviews with general practitioners, practice personnel, patients and carers who participated in the pilot were analysed thematically using an iterative and inductive approach. RESULTS: Key themes identified from 28 participant interviews were enhanced medication and patient safety, collegiality and teamwork, and the pharmacist's influence throughout the continuum of prescribing. Activities highlighted by participants were of deprescribing, interprofessional shared decision making and challenging the prescribing status quo for specific medicines. DISCUSSION: The study described the successful implementation of an Australian GPP model of care to target patients at risk of medication-related harm, which complemented currently available approaches.


Asunto(s)
Medicina General , Farmacéuticos , Australia , Humanos , Administración del Tratamiento Farmacológico , Investigación Cualitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA