RESUMEN
In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.
Asunto(s)
Arilamina N-Acetiltransferasa , Enfermedades Metabólicas , Enfermedades Mitocondriales , Humanos , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Especificidad por Sustrato , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Mitocondriales/tratamiento farmacológicoRESUMEN
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Arginina , Músculo Esquelético , Proteína-Arginina N-Metiltransferasas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Arginina/metabolismo , Arginina/análogos & derivados , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Ratones , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Masculino , Metilación , Femenino , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Proteoma/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Loss of appetite contributes to weight loss and faster disease progression in amyotrophic lateral sclerosis (ALS). Impairment of appetite control in ALS may include altered production or action of orexigenic (i.e., ghrelin) and anorexigenic (i.e., liver-expressed antimicrobial peptide 2 [LEAP2] and leptin) hormones. We aimed to determine if postprandial circulating ghrelin levels, LEAP2 levels, LEAP2:ghrelin molar ratio and leptin levels differ in ALS patients compared to non-neurodegenerative disease controls, and whether they are associated with disease progression and body composition. METHODS: In this prospective natural history study, we assessed postprandial plasma levels of ghrelin, LEAP2 and leptin in patients with ALS (cases; n = 46) and controls (controls; n = 43). For cases, measures were compared to changes in body weight, body composition and clinical outcomes. RESULTS: Postprandial ghrelin level was decreased by 52% in cases compared to controls (p = 0.013). LEAP2:ghrelin molar ratio was increased by 249% (p = 0.009), suggesting greater ghrelin resistance. Patients with lower LEAP2:ghrelin tended to have better functional capacity at assessment, as inferred by the ALS Functional Rating Scale-Revised (τ = -0.179, p = 0.086). Furthermore, ghrelin and LEAP2:ghrelin molar ratio correlated with diagnostic delay (ghrelin, τ = 0.223, p = 0.029; LEAP2:ghrelin, τ = -0.213, p = 0.037). Baseline ghrelin level, LEAP2 level, LEAP2:ghrelin ratio and leptin level were, however, not predictive of change in functional capacity during follow-up. Also, patients with higher postprandial ghrelin levels (hazard ratio [HR] 1.375, p = 0.048), and lower LEAP2:ghelin ratios (HR 0.828, p = 0.051) had an increased risk of earlier death. CONCLUSIONS: Reduced postprandial ghrelin levels, coupled with increased LEAP2:ghrelin molar ratios, suggests a loss of ghrelin action in patients with ALS. Given ghrelin's actions on appetite, metabolism and neuroprotection, reduced ghrelin and greater ghrelin resistance could contribute to impaired capacity to tolerate the physiological impact of disease. Comprehensive studies are needed to explain how ghrelin and LEAP2 contribute to body weight regulation and disease progression in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Leptina , Humanos , Leptina/metabolismo , Ghrelina/metabolismo , Hepcidinas/metabolismo , Estudios Prospectivos , Diagnóstico Tardío , Peso Corporal , Progresión de la Enfermedad , Composición CorporalRESUMEN
Amyotrophic lateral sclerosis (ALS), the major adult-onset motor neuron disease, has been viewed almost exclusively as a disease of upper and lower motor neurons, with muscle changes interpreted as a consequence of the progressive loss of motor neurons and neuromuscular junctions. This has led to the prevailing view that the involvement of muscle in ALS is only secondary to motor neuron loss. Skeletal muscle and motor neurons reciprocally influence their respective development and constitute a single functional unit. In ALS, multiple studies indicate that skeletal muscle dysfunction might contribute to progressive muscle weakness, as well as to the final demise of neuromuscular junctions and motor neurons. Furthermore, skeletal muscle has been shown to participate in disease pathogenesis of several monogenic diseases closely related to ALS. Here, we move the narrative towards a better appreciation of muscle as a contributor of disease in ALS. We review the various potential roles of skeletal muscle cells in ALS, from passive bystanders to active players in ALS pathophysiology. We also compare ALS to other motor neuron diseases and draw perspectives for future research and treatment.
Asunto(s)
Esclerosis Amiotrófica Lateral , Adulto , Humanos , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Músculo Esquelético/patología , Unión Neuromuscular/patología , Debilidad MuscularRESUMEN
BACKGROUND AND PURPOSE: Weight loss in patients with amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. Decreased hypothalamic volume is proposed to contribute to weight loss due to loss of appetite and/or hypermetabolism. We aimed to investigate the relationship between hypothalamic volume and body mass index (BMI) in ALS and Alzheimer's disease (AD), and the associations of hypothalamic volume with weight loss, appetite, metabolism and survival in patients with ALS. METHODS: We compared hypothalamic volumes from magnetic resonance imaging scans with BMI for patients with ALS (n = 42), patients with AD (n = 167) and non-neurodegenerative disease controls (n = 527). Hypothalamic volumes from patients with ALS were correlated with measures of appetite and metabolism, and change in anthropomorphic measures and disease outcomes. RESULTS: Lower hypothalamic volume was associated with lower and higher BMI in ALS (quadratic association; probability of direction = 0.96). This was not observed in AD patients or controls. Hypothalamic volume was not associated with loss of appetite (p = 0.58) or hypermetabolism (p = 0.49). Patients with lower BMI and lower hypothalamic volume tended to lose weight (p = 0.08) and fat mass (p = 0.06) over the course of their disease, and presented with an increased risk of earlier death (hazard ratio [HR] 3.16, p = 0.03). Lower hypothalamic volume alone trended for greater risk of earlier death (HR 2.61, p = 0.07). CONCLUSION: These observations suggest that lower hypothalamic volume in ALS contributes to positive and negative energy balance, and is not universally associated with loss of appetite or hypermetabolism. Critically, lower hypothalamic volume with lower BMI was associated with weight loss and earlier death.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Índice de Masa Corporal , Pérdida de Peso , Progresión de la Enfermedad , Modelos de Riesgos ProporcionalesRESUMEN
BACKGROUND AND PURPOSE: To establish the utility of venous creatinine as a biomarker to monitor loss of fat-free mass in patients with amyotrophic lateral sclerosis (ALS). METHODS: In this multicenter natural history study, body composition and venous creatinine were assessed in 107 patients with ALS and 52 healthy controls. Longitudinal patterns of venous creatinine and its association with the risk of death during follow-up were determined in a cohort of patients with ALS from Australia (n = 69) and the Netherlands (n = 38). RESULTS: The mean levels of venous creatinine were 75.78 ± 11.15 µmol/L for controls, 70.25 ± 12.81 µmol/L for Australian patients, and 59.95 ± 14.62 µmol/L for Dutch patients with ALS. The relationship between measures of venous creatinine and fat-free mass was similar between all groups (r = 0.36, p < 0.001). Within patients, fat-free mass declined by 0.31 (95% confidence interval [CI]: 0.22-0.40) kg/month, and venous creatinine declined by 0.52 (95% CI: 0.38-0.66) µmol/L/month, with a longitudinal correlation of 0.57 (95% CI: 0.35-0.76, p < 0.001). Lower levels of venous creatinine were associated with increased risk for earlier death in patients with ALS (hazard ratio = 0.94, 95% CI: 0.90-0.98, p = 0.007). CONCLUSIONS: Venous creatinine is decreased in ALS and declines alongside a decline in fat-free mass over the course of the disease, and may serve as a practical marker to monitor the change of fat-free mass in patients with ALS. This could inform clinical care and provide an alternative endpoint for the evaluation of therapeutic interventions that focus on slowing the loss of fat-free mass and disease progression in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/diagnóstico , Australia , Biomarcadores , Creatinina , Progresión de la Enfermedad , HumanosRESUMEN
Despite recent and potent technological advances, the real-world implementation of remote digital health technology in the care and monitoring of patients with motor neuron disease has not yet been realized. Digital health technology may increase the accessibility to and personalization of care, whereas remote biosensors could optimize the collection of vital clinical parameters, irrespective of patients' ability to visit the clinic. To facilitate the wide-scale adoption of digital health care technology and to align current initiatives, we outline a road map that will identify clinically relevant digital parameters; mediate the development of benefit-to-burden criteria for innovative technology; and direct the validation, harmonization, and adoption of digital health care technology in real-world settings. We define two key end products of the road map: (1) a set of reliable digital parameters to capture data collected under free-living conditions that reflect patient-centric measures and facilitate clinical decision making and (2) an integrated, open-source system that provides personalized feedback to patients, health care providers, clinical researchers, and caregivers and is linked to a flexible and adaptable platform that integrates patient data in real time. Given the ever-changing care needs of patients and the relentless progression rate of motor neuron disease, the adoption of digital health care technology will significantly benefit the delivery of care and accelerate the development of effective treatments.
Asunto(s)
Enfermedad de la Neurona Motora , Tecnología Biomédica , Cuidadores , Personal de Salud , Humanos , Enfermedad de la Neurona Motora/diagnóstico , Enfermedad de la Neurona Motora/terapia , TecnologíaRESUMEN
The canonical complement component 5a (C5a) receptor (C5aR) 1 has well-described roles in tumorigenesis but the contribution of the second receptor, C5aR2, is unclear. The present study demonstrates that B16.F0 melanoma cells express mRNA for both C5aR1 and C5aR2 and signal through ERK and p38 MAPKs in response to C5a. Despite this, C5a had no impact on melanoma cell proliferation or migration in vitro. In vivo studies demonstrated that the growth of B16.F0 melanoma tumors was increased in C5aR2-/- mice but reduced in C5aR1-/- mice and wild-type mice treated with a C5aR1 antagonist. Analysis of tumor-infiltrating leukocyte populations showed no significant differences between wild-type and C5aR2-/- mice. Conversely, percentages of myeloid-derived suppressor cells, macrophages, and regulatory T lymphocytes were lower in tumors from C5aR1-/- mice, whereas total (CD3+) T lymphocytes and CD4+ subsets were higher. Analysis of cytokine and chemokine levels also showed plasma IFN-γ was higher and tumor C-C motif chemokine ligand 2 was lower in the absence of C5aR1. The results suggest that C5aR1 signaling supports melanoma growth by promoting infiltration of immunosuppressive leukocyte populations into the tumor microenvironment, whereas C5aR2 has a more restricted but beneficial role in limiting tumor growth. Overall, these data support the potential of C5aR1-inhibitory therapies for melanoma.-Nabizadeh, J. A., Manthey, H. D., Panagides, N., Steyn, F. J., Lee, J. D., Li, X. X., Akhir, F. N. M., Chen, W., Boyle, G. M., Taylor, S. M., Woodruff, T. M., Rolfe, B. E. C5a receptors C5aR1 and C5aR2 mediate opposing pathologies in a mouse model of melanoma.
Asunto(s)
Movimiento Celular , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/genética , Receptor de Anafilatoxina C5a/genética , Animales , Proliferación Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Complemento C5a/inmunología , Femenino , Interferón gamma/genética , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Sistema de Señalización de MAP Quinasas , Masculino , Melanoma/inmunología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Microambiente TumoralRESUMEN
OBJECTIVE: To determine the prevalence of hypermetabolism, relative to body composition, in amyotrophic lateral sclerosis (ALS) and its relationship with clinical features of disease and survival. METHODS: Fifty-eight patients with clinically definite or probable ALS as defined by El Escorial criteria, and 58 age and sex-matched control participants underwent assessment of energy expenditure. Our primary outcome was the prevalence of hypermetabolism in cases and controls. Longitudinal changes in clinical parameters between hypermetabolic and normometabolic patients with ALS were determined for up to 12 months following metabolic assessment. Survival was monitored over a 30-month period following metabolic assessment. RESULTS: Hypermetabolism was more prevalent in patients with ALS than controls (41% vs 12%, adjusted OR=5.4; p<0.01). Change in body weight, body mass index and fat mass (%) was similar between normometabolic and hypermetabolic patients with ALS. Mean lower motor neuron score (SD) was greater in hypermetabolic patients when compared with normometabolic patients (4 (0.3) vs 3 (0.7); p=0.04). In the 12 months following metabolic assessment, there was a greater change in Revised ALS Functional Rating Scale score in hypermetabolic patients when compared with normometabolic patients (-0.68 points/month vs -0.39 points/month; p=0.01). Hypermetabolism was inversely associated with survival. Overall, hypermetabolism increased the risk of death during follow-up to 220% (HR 3.2, 95% CI 1.1 to 9.4, p=0.03). CONCLUSIONS AND RELEVANCE: Hypermetabolic patients with ALS have a greater level of lower motor neuron involvement, faster rate of functional decline and shorter survival. The metabolic index could be important for informing prognosis in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Composición Corporal/fisiología , Índice de Masa Corporal , Metabolismo Energético/fisiología , Anciano , Esclerosis Amiotrófica Lateral/mortalidad , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de SupervivenciaRESUMEN
The complement peptide C3a is a key component of the innate immune system and a major fragment produced following complement activation. We used a murine model of melanoma (B16-F0) to identify a hitherto unknown role for C3a-C3aR signaling in promoting tumor growth. The results show that the development and growth of B16-F0 melanomas is retarded in mice lacking C3aR, whereas growth of established melanomas can be arrested by C3aR antagonism. Flow cytometric analysis showed alterations in tumor-infiltrating leukocytes in the absence of C3aR. Specifically, neutrophils and CD4(+) T lymphocyte subpopulations were increased, whereas macrophages were reduced. The central role of neutrophils was confirmed by depletion experiments that reversed the tumor inhibitory effects observed in C3aR-deficient mice and returned tumor-infiltrating CD4(+) T cells to control levels. Analysis of the tumor microenvironment showed upregulation of inflammatory genes that may contribute to the enhanced antitumor response observed in C3aR-deficient mice. C3aR deficiency/inhibition was also protective in murine models of BRAF(V600E) mutant melanoma and colon and breast cancer, suggesting a tumor-promoting role for C3aR signaling in a range of tumor types. We propose that C3aR activation alters the tumor inflammatory milieu, thereby promoting tumor growth. Therapeutic inhibition of C3aR may therefore be an effective means to trigger an antitumor response in melanoma and other cancers.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Carcinogénesis/inmunología , Melanoma/inmunología , Melanoma/patología , Neutrófilos/inmunología , Receptores de Complemento/inmunología , Animales , Linfocitos T CD4-Positivos/patología , Células Cultivadas , Femenino , Melanoma/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neutrófilos/patología , Receptores de Complemento/deficienciaRESUMEN
In the laboratory setting, typical endocrine and targeted behavioral tests are limited in their ability to provide a direct assessment of stress in animals housed in undisturbed conditions. We hypothesized that an automated phenotyping system would allow the detection of subtle stress-related behavioral changes well beyond the time-frames examined using conventional methods. In this study, we have utilized the TSE PhenoMaster system to continuously record basal behaviors and physiological parameters including activity, body weight, food intake and oxygen consumption in undisturbed and stressed C57Bl/6J male mice (n = 12/group), with a pharmacological intervention using the conventional anxiolytic, diazepam (5 mg kg-1 i.p.; n = 8/group). We observed significant 20-30% reductions in locomotor activity in the dark phase, with subtle reductions in light phase activity for up to 96 h following a single 2 h episode of restraint stress. A single administration of diazepam reduced plasma corticosterone concentrations by 30-35% during stress exposure when compared to mice treated with vehicle. This treatment did not result in significantly different locomotor activity compared to vehicle within the first 48 h following restraint stress. However, diazepam treatment facilitated restoration of locomotor activity at 72 and 96 h after restraint stress exposure in comparison to vehicle-treated mice. Hence, the use of an automated phenotyping system allows a real time assessment of basal behaviors and empirical metabolism following exposure to restraint stress and demonstrates major and subtle changes in activity persist for several days after stress exposure.
Asunto(s)
Peso Corporal/fisiología , Locomoción/fisiología , Monitoreo Fisiológico/métodos , Animales , Ansiolíticos/farmacología , Peso Corporal/efectos de los fármacos , Corticosterona/sangre , Diazepam/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Restricción Física/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiologíaRESUMEN
KEY POINTS: We developed a method that allows for real-time assessment of cellular metabolism in isolated, intact long skeletal muscle fibre bundles from adult mice. This method can be used to study changes in mitochondrial function and fuel utilisation in live skeletal muscle fibre bundles. Our method enables flexibility in experimental design and high-throughput assessment of mitochondrial parameters in isolated skeletal muscle fibre bundles. Extensor digitorum longus (EDL) fibre bundles obtained from chronic high-fat diet fed mice had lower basal oxygen consumption under FCCP-induced maximal respiration, when compared to control chow-fed mice. EDL fibre bundles obtained from chronic high-fat diet fed mice had enhanced mitochondrial oxidation capacity under FCCP-induced maximal respiration, when compared to control chow-fed mice. ABSTRACT: Metabolic dysfunction in skeletal muscle contributes to the aetiology and development of muscle diseases and metabolic diseases. As such, assessment of skeletal muscle cellular bioenergetics provides a powerful means to understand the role of skeletal muscle metabolism in disease and to identify possible therapeutic targets. Here, we developed a method that allows for the real-time assessment of cellular respiration in intact skeletal muscle fibre bundles obtained from the extensor digitorum longus (EDL) muscle of adult mice. Using this method, we assessed the contribution of ATP turnover and proton leak to basal mitochondrial oxygen consumption rate (OCR). Our data demonstrate that the mitochondria in EDL fibres are loosely coupled. Moreover, in the presence of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), we show that palmitate exposure induced comparable peak OCR and higher total OCR in EDL fibre bundles when compared to pyruvate exposure, suggesting that fatty acids might be a more sustainable fuel source for skeletal muscle when mitochondria are driven to maximal respiration. Application of this method to EDL fibre bundles obtained from chronic high-fat diet fed mice revealed lower basal OCR and enhanced mitochondrial oxidation capacity in the presence of FCCP when compared to the chow-diet fed control mice. By using a 96-well microplate format, our method provides a flexible and efficient platform to investigate mitochondrial parameters of intact skeletal muscle fibres obtained from adult mice.
Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Respiración de la Célula/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ácido Palmítico/farmacología , Ácido Pirúvico/farmacologíaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurones, which leads to paralysis and death in an average of 3 years following diagnosis. The cause of ALS is unknown, but there is substantial evidence that metabolic factors, including nutritional state and body weight, affect disease progression and survival. This review provides an overview of the characteristics of metabolic dysregulation in ALS focusing on mechanisms that lead to disrupted energy supply (at a whole-body and cellular level) and altered energy expenditure. We discuss how a decrease in energy supply occurs in parallel with an increase in energy demand and leads to a state of chronic energy deficit which has a negative impact on disease outcome in ALS. We conclude by presenting potential and tested strategies to compensate for, or correct this energy imbalance, and speculate on promising areas for further research.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Progresión de la Enfermedad , Homeostasis , Encéfalo/metabolismo , Metabolismo Energético , Humanos , Mitocondrias/metabolismo , Neuronas Motoras/metabolismoRESUMEN
The hypothalamic NPY system plays an important role in regulating food intake and energy expenditure. Different biological actions of NPY are assigned to NPY receptor subtypes. Recent studies demonstrated a close relationship between food intake and growth hormone (GH) secretion; however, the mechanism through which endogenous NPY modulates GH release remains unknown. Moreover, conclusive evidence demonstrating a role for NPY and Y-receptors in regulating the endogenous pulsatile release of GH does not exist. We used genetically modified mice (germline Npy, Y1, and Y2 receptor knock-out mice) to assess pulsatile GH secretion under both fed and fasting conditions. Deletion of NPY did not impact fed GH release; however, it reversed the fasting-induced suppression of pulsatile GH secretion. The recovery of GH secretion was associated with a reduction in hypothalamic somatotropin release inhibiting factor (Srif; somatostatin) mRNA expression. Moreover, observations revealed a differential role for Y1 and Y2 receptors, wherein the postsynaptic Y1 receptor suppresses GH secretion in fasting. In contrast, the presynaptic Y2 receptor maintains normal GH output under long-term ad libitum-fed conditions. These data demonstrate an integrated neural circuit that modulates GH release relative to food intake, and provide essential information to address the differential roles of Y1 and Y2 receptors in regulating the release of GH under fed and fasting states.
Asunto(s)
Ayuno/fisiología , Hormona del Crecimiento/metabolismo , Neuropéptido Y/fisiología , Receptores de Neuropéptido Y/fisiología , Animales , Glucemia , Hormona Liberadora de Hormona del Crecimiento/biosíntesis , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuropéptido Y/sangre , Neuropéptido Y/genética , Péptido YY/sangre , Receptores de Neuropéptido Y/genética , Somatostatina/biosíntesisAsunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Neuronas Motoras , Pronóstico , Pérdida de PesoRESUMEN
BACKGROUND AND OBJECTIVES: Altered metabolism is observed in amyotrophic lateral sclerosis (ALS). However, without a standardized methodology to define metabolic changes, our understanding of factors contributing to and the clinical significance of altered metabolism in ALS is limited. METHODS: We aimed to determine how geographic variation in metabolic rates influences estimates and accuracy of predicted resting energy expenditure (REE) in patients with ALS and controls, while validating the effectiveness of cohort-specific approaches in predicting altered metabolic rate in ALS. Participants from 3 geographically distinct sites across Australia, China, and the Netherlands underwent REE assessments, and we considered 22 unique equations for estimating REE. Analyses evaluated equation performance and the influence of demographics on metabolic status. Comparisons were made using standardized and local reference values to identify metabolic alterations. RESULTS: 606 participants were included from Australia (patients with ALS: 140, controls: 154), the Netherlands (patients with ALS: 79, controls: 37) and China (patients with ALS: 67, controls: 129). Measured REE was variable across geographic cohorts, with fat-free mass contributing to this variation across all patients (p = 0.002 to p < 0.001). Of the 22 predication equations assessed, the Sabounchi Structure 4 (S4) equation performed relatively well across all control cohorts. Use of prediction thresholds generated using data from Australian controls generally increased the prevalence of hypermetabolism in Chinese (55%, [43%-67%]) and Dutch (44%, [33%-55%]) cases when compared with Australian cases (30%, [22%-38%]). Adjustment of prediction thresholds to consider geographically distinct characteristics from matched control cohorts resulted in a decrease in the proportion of hypermetabolic cases in Chinese and Dutch cohorts (25%-31% vs 55% and 20%-34% vs 43%-44%, respectively), and increased prevalence of hypometabolism in Dutch cases with ALS (1% to 8%-10%). DISCUSSION: The identification of hypermetabolism in ALS is influenced by the formulae and demographic-specific prediction thresholds used for defining alterations in metabolic rate. A consensus approach is needed for identification of metabolic changes in ALS and will facilitate improved understanding of the cause and clinical significance of this in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Metabolismo Basal , Humanos , Metabolismo Energético , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/metabolismo , Australia/epidemiología , Composición CorporalRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Clinical heterogeneity and complex genetics pose challenges to understanding disease mechanisms and producing effective cures. To model clinical heterogeneity, we generated human induced pluripotent stem cells (iPSCs) from two sporadic ALS patients (sporadic ALS and sporadic ALS with frontotemporal dementia), two familial ALS patients (familial SOD1 mutation positive and familial C9orf72 repeat expansion positive), and four age- and sex-matched healthy controls. These iPSCs can be used to generate 2D and 3D in vitro models of ALS to investigate mechanisms of disease and screen for therapeutics.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Superóxido Dismutasa-1 , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Femenino , Masculino , Línea Celular , Persona de Mediana EdadRESUMEN
Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress ß-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.
Asunto(s)
Hígado Graso , Interleucina-22 , Interleucinas , Hígado , Páncreas , Interleucinas/metabolismo , Animales , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Páncreas/efectos de los fármacos , Humanos , Ratones , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Resistencia a la Insulina , Receptores de Interleucina/metabolismoRESUMEN
BACKGROUND: Actigraphy has been proposed as a measure for tracking functional decline and disease progression in patients with Motor Neuron Disease (MND). There is, however, little evidence to show that wrist-based actigraphy measures correlate with functional decline, and no consensus on how best to implement actigraphy. We report on the use of wrist actigraphy to show decreased activity in patients compared to controls, and compared the utility of wrist- and hip-based actigraphy for assessing functional decline in patients with MND. METHODS: In this multi-cohort, multi-centre, natural history study, wrist- and hip-based actigraphy were assessed in 139 patients with MND (wrist, n = 97; hip, n = 42) and 56 non-neurological control participants (wrist, n = 56). For patients with MND, longitudinal measures were contrasted with clinical outcomes commonly used to define functional decline. RESULTS: Patients with MND have reduced wrist-based actigraphy scores when compared to controls (median differences: prop. active = - 0.053 [- 0.075, - 0.026], variation axis 1 = - 0.073 [- 0.112, - 0.021]). When comparing wrist- and hip-based measures, hip-based accelerometery had stronger correlations with disease progression (prop. active: τ = 0.20 vs 0.12; variation axis 1: τ = 0.33 vs 0.23), whereas baseline wrist-based accelerometery was better related with future decline in fine-motor function (τ = 0.14-0.23 vs 0.06-0.16). CONCLUSIONS: Actigraphy outcomes measured from the wrist are more variable than from the hip and present differing sensitivity to specific functional outcomes. Outcomes and analysis should be carefully constructed to maximise benefit, should wrist-worn devices be used for at-home monitoring of disease progression in patients with MND.