Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nucleic Acids Res ; 51(22): 12443-12458, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37930833

RESUMEN

The dNTPase activity of tetrameric SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) plays a critical role in cellular dNTP regulation. SAMHD1 also associates with stalled DNA replication forks, DNA repair foci, ssRNA and telomeres. The above functions require nucleic acid binding by SAMHD1, which may be modulated by its oligomeric state. Here we establish in cryo-EM and biochemical studies that the guanine-specific A1 activator site of each SAMHD1 monomer is used to target the enzyme to guanine nucleotides within single-stranded (ss) DNA and RNA. Remarkably, nucleic acid strands containing a single guanine base induce dimeric SAMHD1, while two or more guanines with ∼20 nucleotide spacing induce a tetrameric form. A cryo-EM structure of ssRNA-bound tetrameric SAMHD1 shows how ssRNA strands bridge two SAMHD1 dimers and stabilize the structure. This ssRNA-bound tetramer is inactive with respect to dNTPase and RNase activity.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , ARN , Guanina , Proteínas de Unión al GTP Monoméricas/genética , Nucleótidos/metabolismo , Polímeros/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo
2.
Nucleic Acids Res ; 50(13): 7545-7559, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801923

RESUMEN

SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) is driven into its activated tetramer form by binding of GTP activator and dNTP activators/substrates. In addition, the inactive monomeric and dimeric forms of the enzyme bind to single-stranded (ss) nucleic acids. During DNA replication SAMHD1 can be phosphorylated by CDK1 and CDK2 at its C-terminal threonine 592 (pSAMHD1), localizing the enzyme to stalled replication forks (RFs) to promote their restart. Although phosphorylation has only a small effect on the dNTPase activity and ssDNA binding affinity of SAMHD1, perturbation of the native T592 by phosphorylation decreased the thermal stability of tetrameric SAMHD1 and accelerated tetramer dissociation in the absence and presence of ssDNA (∼15-fold). In addition, we found that ssDNA binds competitively with GTP to the A1 site. A full-length SAMHD1 cryo-EM structure revealed substantial dynamics in the C-terminal domain (which contains T592), which could be modulated by phosphorylation. We propose that T592 phosphorylation increases tetramer dynamics and allows invasion of ssDNA into the A1 site and the previously characterized DNA binding surface at the dimer-dimer interface. These features are consistent with rapid and regiospecific inactivation of pSAMHD1 dNTPase at RFs or other sites of free ssDNA in cells.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , ADN de Cadena Simple , Guanosina Trifosfato/metabolismo , Cinética , Proteínas de Unión al GTP Monoméricas/genética , Fosforilación , Proteína 1 que Contiene Dominios SAM y HD/química
3.
Retrovirology ; 19(1): 21, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114511

RESUMEN

BACKGROUND: Although CD4+ memory T cells are considered the primary latent reservoir for HIV-1, replication competent HIV has been detected in tissue macrophages in both animal and human studies. During in vitro HIV infection, the depleted nucleotide pool and high dUTP levels in monocyte derived macrophages (MDM) leads to proviruses with high levels of dUMP, which has been implicated in viral restriction or reduced transcription depending on the uracil base excision repair (UBER) competence of the macrophage. Incorporated dUMP has also been detected in viral DNA from circulating monocytes (MC) and alveolar macrophages (AM) of HIV infected patients on antiretroviral therapy (ART), establishing the biological relevance of this phenotype but not the replicative capacity of dUMP-containing proviruses. RESULTS: As compared to in vitro differentiated MDM, AM from normal donors had sixfold lower levels of dTTP and a sixfold increased dUTP/dTTP, indicating a highly restrictive dNTP pool for reverse transcription. Expression of uracil DNA glycosylase (UNG) was eightfold lower in AM compared to the already low levels in MDM. Accordingly, ~ 80% of HIV proviruses contained dUMP, which persisted for at least 14-days due to low UNG excision activity. Unlike MDM, AM expression levels of UNG and SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) increased over 14 days post-HIV infection, while dUTP nucleotidohydrolase (DUT) expression decreased. These AM-specific effects suggest a restriction response centered on excising uracil from viral DNA copies and increasing relative dUTP levels. Despite the restrictive nucleotide pools, we detected rare replication competent HIV in AM, peripheral MC, and CD4+ T cells from ART-treated donors. CONCLUSIONS: These findings indicate that the potential integration block of incorporated dUMP is not realized during in vivo infection of AM and MC due to the near absence of UBER activity. In addition, the increased expression of UNG and SAMHD1 in AM post-infection is too slow to prevent integration. Accordingly, dUMP persists in integrated viruses, which based on in vitro studies, can lead to transcriptional silencing. This possible silencing outcome of persistent dUMP could promote viral latency until the repressive effects of viral dUMP are reversed.


Asunto(s)
Infecciones por VIH , VIH-1 , ADN Viral/genética , VIH-1/fisiología , Humanos , Macrófagos Alveolares , Monocitos/metabolismo , Nucleótidos/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Uracilo/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Replicación Viral
4.
Mol Pharmacol ; 99(6): 412-425, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795350

RESUMEN

Previous short-hairpin RNA knockdown studies have established that depletion of human uracil DNA glycosylase (hUNG) sensitizes some cell lines to 5-fluorodeoxyuridine (FdU). Here, we selectively inhibit the catalytic activity of hUNG by lentiviral transduction of uracil DNA glycosylase inhibitor protein into a large panel of cancer cell lines under control of a doxycycline-inducible promoter. This induced inhibition strategy better assesses the therapeutic potential of small-molecule targeting of hUNG. In total, 6 of 11 colorectal lines showed 6- to 70-fold increases in FdU potency upon hUNG inhibition ("responsive"). This hUNG-dependent response was not observed with fluorouracil (FU), indicating that FU does not operate through the same DNA repair mechanism as FdU in vitro. Potency of the thymidylate synthase inhibitor raltitrexed (RTX), which elevates deoxyuridine triphosphate levels, was only incrementally enhanced upon hUNG inhibition (<40%), suggesting that responsiveness is associated with incorporation and persistence of FdU in DNA rather than deoxyuridine. The importance of FU/A and FU/G lesions in the toxicity of FdU is supported by the observation that dT supplementation completely rescued the toxic effects of U/A lesions resulting from RTX, but dT only increased the IC50 for FdU, which forms both FU/A and FU/G mismatches. Contrary to previous reports, cellular responsiveness to hUNG inhibition did not correlate with p53 status or thymine DNA glycosylase expression. A model is suggested in which the persistence of FU/A and FU/G base pairs in the absence of hUNG activity elicits an apoptotic DNA damage response in both responsive and nonresponsive colorectal lines. SIGNIFICANCE STATEMENT: The pyrimidine base 5-fluorouracil is a mainstay chemotherapeutic for treatment of advanced colorectal cancer. Here, this study shows that its deoxynucleoside form, 5-fluorodeoxyuridine (FdU), operates by a distinct DNA incorporation mechanism that is strongly potentiated by inhibition of the DNA repair enzyme human uracil DNA glycosylase. The hUNG-dependent mechanism was present in over 50% of colorectal cell lines tested, suggesting that a significant fraction of human cancers may be sensitized to FdU in the presence of a small-molecule hUNG inhibitor.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/patología , Floxuridina/farmacología , Fluorouracilo/farmacología , Quinazolinas/farmacología , Tiofenos/farmacología , Uracil-ADN Glicosidasa/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Uracil-ADN Glicosidasa/metabolismo
5.
Nucleic Acids Res ; 47(8): 4153-4168, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30892639

RESUMEN

dUTP is a close structural congener of dTTP and can be readily incorporated into DNA opposite to adenine during DNA replication leading to non-mutagenic dU/A base pairs ('uracilation'). We find that dU/A pairs located within DNA transcriptional templates optimized for either T7 RNA polymerase (T7 RNAP) or human RNA polymerase II (pol II) have inhibitory and mutagenic effects on transcription. The data for T7 RNAP establishes that even a single dU/A pair can inhibit promoter binding and transcription initiation up to 30-fold, and that inhibitory effects on transcription elongation are also possible. Sequencing of the mRNA transcribed from uniformly uracilated DNA templates by T7 RNAP indicated an increased frequency of transversion and insertion mutations compared to all T/A templates. Strong effects of dU/A pairs on cellular transcription activity and fidelity were also observed with RNA pol II using uracil base excision repair (UBER)-deficient human cells. At the highest levels of template uracilation, transcription by RNA pol II was completely blocked. We propose that these effects arise from the decreased thermodynamic stability and increased dynamics of dU/A pairs in DNA. The potential implications of these findings on gene regulation and disease are discussed.


Asunto(s)
Reparación del ADN , ARN Polimerasas Dirigidas por ADN/genética , ADN/genética , Desoxiuridina/metabolismo , ARN Polimerasa II/genética , ARN/genética , Transcripción Genética , Proteínas Virales/genética , Emparejamiento Base , Secuencia de Bases , Línea Celular Tumoral , ADN/metabolismo , Replicación del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Cinética , Mutación , Regiones Promotoras Genéticas , Unión Proteica , ARN/metabolismo , ARN Polimerasa II/metabolismo , Termodinámica , Proteínas Virales/metabolismo
6.
Chem Rev ; 118(23): 11298-11323, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30379068

RESUMEN

Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.


Asunto(s)
Reparación del ADN , ADN/química , ADN/genética , Difusión , Activación Transcripcional , Humanos , Activación Transcripcional/genética
7.
Nucleic Acids Res ; 46(14): 7169-7178, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29917162

RESUMEN

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias for uracil located <10 bp from the junction, but only when the overhang had a 5' end. Biased targeting required the NTD and was not observed with the hUNG2 catalytic domain alone. Consistent with this requirement, the isolated NTD was found to bind weakly to ssDNA. These findings indicate that the NTD of hUNG2 targets the enzyme to ssDNA-dsDNA junctions using RPA-dependent and RPA-independent mechanisms. This structure-based specificity may promote efficient removal of uracils that arise from dUTP incorporation during DNA replication, or additionally, uracils that arise from DNA cytidine deamination at transcriptional R-loops during immunoglobulin class-switch recombination.


Asunto(s)
ADN de Cadena Simple/metabolismo , ADN/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Uracilo/metabolismo , Secuencia de Bases , Sitios de Unión , ADN/química , ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/genética , Nucleótidos de Desoxiuracil/metabolismo , Humanos , Modelos Genéticos , Conformación de Ácido Nucleico , Unión Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Especificidad por Sustrato , Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/genética
8.
Nucleic Acids Res ; 45(21): 12413-12424, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036472

RESUMEN

DNA 'sliding' by human repair enzymes is considered to be important for DNA damage detection. Here, we transfected uracil-containing DNA duplexes into human cells and measured the probability that nuclear human uracil DNA glycosylase (hUNG2) excised two uracil lesions spaced 10-80 bp apart in a single encounter without escaping the micro-volume containing the target sites. The two-site transfer probabilities were 100% and 54% at a 10 and 40 bp spacing, but dropped to only 10% at 80 bp. Enzyme trapping experiments suggested that site transfers over 40 bp followed a DNA 'hopping' pathway in human cells, indicating that authentic sliding does not occur even over this short distance. The transfer probabilities were much greater than observed in aqueous buffers, but similar to in vitro measurements in the presence of polymer crowding agents. The findings reveal a new role for the crowded nuclear environment in facilitating DNA damage detection.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN/metabolismo , Línea Celular , Humanos , Uracilo/metabolismo
9.
Biophys J ; 113(2): 393-401, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746850

RESUMEN

Uracil DNA Glycosylase (UNG2) is the primary enzyme in humans that prevents the stable incorporation of deoxyuridine monophosphate into DNA in the form of U/A basepairs. During S-phase, UNG2 remains associated with the replication fork through its interactions with two proteins, Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RPA), which are critical for DNA replication and repair. In this work, we used protein semisynthesis and fluorescence anisotropy assays to explore the interactions of UNG2 with PCNA and RPA and to determine the effects of two UNG2 phosphorylation sites (Thr6 and Tyr8) located within its PCNA-interacting motif (PIP-box). In binding assays, we found that phosphorylation of Thr6 or Tyr8 on UNG2 can impede PCNA binding without affecting UNG2 catalytic activity or its RPA interaction. Our data also suggests that unmodified UNG2, PCNA, and RPA can form a ternary protein complex. We propose that the UNG2 N-terminus may serve as a flexible scaffold to tether PCNA and RPA at the replication fork, and that post-translational modifications on the UNG2 N-terminus disrupt formation of the PCNA-UNG2-RPA protein complex.


Asunto(s)
ADN Glicosilasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Catálisis , ADN Glicosilasas/genética , Escherichia coli , Humanos , Mutación , Fosforilación , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Espectrometría de Masa por Ionización de Electrospray
10.
Biochemistry ; 56(14): 1974-1986, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28345889

RESUMEN

A major product of oxidative DNA damage is 8-oxoguanine. In humans, 8-oxoguanine DNA glycosylase (hOGG1) facilitates removal of these lesions, producing an abasic (AP) site in the DNA that is subsequently incised by AP-endonuclease 1 (APE1). APE1 stimulates turnover of several glycosylases by accelerating rate-limiting product release. However, there have been conflicting accounts of whether hOGG1 follows a similar mechanism. In pre-steady-state kinetic measurements, we found that addition of APE1 had no effect on the rapid burst phase of 8-oxoguanine excision by hOGG1 but accelerated steady-state turnover (kcat) by ∼10-fold. The stimulation by APE1 required divalent cations, could be detected under multiple-turnover conditions using limiting concentrations of APE1, did not require flanking DNA surrounding the hOGG1 lesion site, and occurred efficiently even when the first 49 residues of APE1's N-terminus had been deleted. Stimulation by APE1 does not involve relief from product inhibition because thymine DNA glycosylase, an enzyme that binds more tightly to AP sites than hOGG1 does, could not effectively substitute for APE1. A stimulation mechanism involving stable protein-protein interactions between free APE1 and hOGG1, or the DNA-bound forms, was excluded using protein cross-linking assays. The combined results indicate a mechanism whereby dynamic excursions of hOGG1 from the AP site allow APE1 to invade the site and rapidly incise the phosphate backbone. This mechanism, which allows APE1 to access the AP site without forming specific interactions with the glycosylase, is a simple and elegant solution to passing along unstable intermediates in base excision repair.


Asunto(s)
Adenosina Trifosfato/química , ADN Glicosilasas/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN/química , Guanina/análogos & derivados , Adenosina Trifosfato/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Expresión Génica , Glutaral/química , Guanina/química , Guanina/metabolismo , Radioisótopos de Fósforo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado/métodos
11.
Nucleic Acids Res ; 43(13): 6486-99, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26101257

RESUMEN

The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3'-5' exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any known dNTP binding site. Monomeric SAMHD1 was found to bind preferentially to single-stranded RNA, while the tetrameric form required for dNTPase action bound weakly. ssRNA binding, but not ssDNA, induces higher-order oligomeric states that are distinct from the tetrameric form that binds dNTPs. We conclude that the trace exonuclease activities detected in SAMHD1 preparations arise from persistent contaminants that co-purify with SAMHD1 and not from the HD active site. An in vivo model is suggested where SAMHD1 alternates between the mutually exclusive functions of ssRNA binding and dNTP hydrolysis depending on dNTP pool levels and the presence of viral ssRNA.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al ARN/metabolismo , Dominio Catalítico/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/genética , Exorribonucleasas/antagonistas & inhibidores , Humanos , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/aislamiento & purificación , Mutación , Nucleósido-Trifosfatasa/antagonistas & inhibidores , Nucleósido-Trifosfatasa/genética , Nucleósido-Trifosfatasa/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteína 1 que Contiene Dominios SAM y HD , Zinc/farmacología
12.
Nucleic Acids Res ; 43(8): 4087-97, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25845592

RESUMEN

Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA.


Asunto(s)
ADN Glicosilasas/metabolismo , Uracil-ADN Glicosidasa/metabolismo , ADN/metabolismo , Reparación del ADN , Difusión Facilitada , Humanos , Polietilenglicoles , Transporte de Proteínas
13.
Proc Natl Acad Sci U S A ; 111(18): E1843-51, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24753578

RESUMEN

The HIV-1 restriction factor sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1) is a tetrameric protein that catalyzes the hydrolysis of all dNTPs to the deoxynucleoside and tripolyphosphate, which effectively depletes the dNTP substrates of HIV reverse transcriptase. Here, we establish that SAMHD1 is activated by GTP binding to guanine-specific activator sites (A1) as well as coactivation by substrate dNTP binding to a distinct set of nonspecific activator sites (A2). Combined activation by GTP and dNTPs results in a long-lived tetrameric form of SAMHD1 that persists for hours, even after activating nucleotides are withdrawn from the solution. These results reveal an ordered model for assembly of SAMHD1 tetramer from its inactive monomer and dimer forms, where GTP binding to the A1 sites generates dimer and dNTP binding to the A2 and catalytic sites generates active tetramer. Thus, cellular regulation of active SAMHD1 is not determined by GTP alone but instead, the levels of all dNTPs and the generation of a persistent tetramer that is not in equilibrium with free activators. The significance of the long-lived activated state is that SAMHD1 can remain active long after dNTP pools have been reduced to a level that would lead to inactivation. This property would be important in resting CD4(+) T cells, where dNTP pools are reduced to nanomolar levels to restrict infection by HIV-1.


Asunto(s)
Desoxirribonucleótidos/metabolismo , Guanosina Trifosfato/metabolismo , VIH-1/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Dominio Catalítico , Nucleótidos de Desoxiguanina/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Activación Enzimática , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Inmunidad Innata , Cinética , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/inmunología , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteína 1 que Contiene Dominios SAM y HD , Especificidad por Sustrato , Tionucleósidos/metabolismo
14.
Biochemistry ; 55(37): 5230-42, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27571472

RESUMEN

The energetic nature of the interactions of DNA base excision repair glycosylases with undamaged and damaged DNA and the nuclear environment are expected to significantly impact the time it takes for these enzymes to search for damaged DNA bases. In particular, the high concentration of monovalent ions, macromolecule crowding, and densely packed DNA chains in the cell nucleus could alter the search mechanisms of these enzymes as compared to findings in dilute buffers typically used in in vitro experiments. Here we utilize an in vitro system where the concerted effects of monovalent ions, macromolecular crowding, and high concentrations of bulk DNA chains on the activity of two paradigm human DNA glycosylases can be determined. We find that the energetic nature of the observed binding free energies of human 8-oxoguanine DNA glycosylase (hOGG1) and human uracil DNA glycosylase (hUNG) for undamaged DNA are derived from different sources. Although hOGG1 uses primarily nonelectrostatic binding interactions with nonspecific DNA, hUNG uses a salt-dependent electrostatic binding mode. Both enzymes turn to a nonelectrostatic mode in their specific complexes with damaged bases in DNA, which enhances damage site specificity at physiological ion concentrations. Neither enzyme was capable of efficiently locating and removing their respective damaged bases in the combined presence of physiological ions and a bulk DNA chain density approximating that found in the nucleus. However, the addition of an inert crowding agent to mimic macromolecular crowding in the nucleus largely restored their ability to track DNA chains and locate damaged sites. These findings suggest how the concerted action of monovalent ions and crowding could contribute to efficient DNA damage recognition in cells.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , ADN/química , Uracil-ADN Glicosidasa/metabolismo , Humanos , Electricidad Estática
15.
Biochemistry ; 55(44): 6087-6099, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27775344

RESUMEN

Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.


Asunto(s)
Biopolímeros/química , ADN de Cadena Simple/química , Proteínas de Unión al GTP Monoméricas/química , ARN/química , Bromodesoxiuridina/química , Catálisis , Cromatografía Liquida , Clonación Molecular , Humanos , Espectrometría de Masas , Proteínas de Unión al GTP Monoméricas/genética , Proteína 1 que Contiene Dominios SAM y HD
16.
Nucleic Acids Res ; 42(14): 9295-303, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25016526

RESUMEN

The DNA backbone is often considered a track that allows long-range sliding of DNA repair enzymes in their search for rare damage sites in DNA. A proposed exemplar of DNA sliding is human 8-oxoguanine ((o)G) DNA glycosylase 1 (hOGG1), which repairs mutagenic (o)G lesions in DNA. Here we use our high-resolution molecular clock method to show that macroscopic 1D DNA sliding of hOGG1 occurs by microscopic 2D and 3D steps that masquerade as sliding in resolution-limited single-molecule images. Strand sliding was limited to distances shorter than seven phosphate linkages because attaching a covalent chemical road block to a single DNA phosphate located between two closely spaced damage sites had little effect on transfers. The microscopic parameters describing the DNA search of hOGG1 were derived from numerical simulations constrained by the experimental data. These findings support a general mechanism where DNA glycosylases use highly dynamic multidimensional diffusion paths to scan DNA.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , ADN/metabolismo , Difusión , Humanos
17.
Nucleic Acids Res ; 42(15): 9964-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064858

RESUMEN

Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , ADN/metabolismo , Alanina/genética , Citidina Desaminasa/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Análisis de Secuencia de ADN , Relación Estructura-Actividad
18.
Proc Natl Acad Sci U S A ; 110(6): E448-57, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341616

RESUMEN

HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN Viral/metabolismo , VIH-1/fisiología , Integración Viral/fisiología , Fármacos Anti-VIH/farmacología , Secuencia de Bases , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/genética , ADN Viral/química , ADN Viral/genética , Nucleótidos de Desoxiuracil/metabolismo , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , VIH-1/genética , VIH-1/patogenicidad , Células HT29 , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/fisiología , Humanos , Inmunidad Innata , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Modelos Biológicos , Mutación , Quinazolinas/farmacología , Transcripción Reversa , Tiofenos/farmacología , Timidina/metabolismo , Timidina/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Virión
19.
Biochemistry ; 53(26): 4302-15, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24945825

RESUMEN

Type IB topoisomerases unwind positive and negative DNA supercoils and play a key role in removing supercoils that would otherwise accumulate at replication and transcription forks. An interesting question is whether topoisomerase activity is regulated by the topological state of the DNA, thereby providing a mechanism for targeting the enzyme to highly supercoiled DNA domains in genomes. The type IB enzyme from variola virus (vTopo) has proven to be useful in addressing mechanistic questions about topoisomerase function because it forms a reversible 3'-phosphotyrosyl adduct with the DNA backbone at a specific target sequence (5'-CCCTT-3') from which DNA unwinding can proceed. We have synthesized supercoiled DNA minicircles (MCs) containing a single vTopo target site that provides highly defined substrates for exploring the effects of supercoil density on DNA binding, strand cleavage and ligation, and unwinding. We observed no topological dependence for binding of vTopo to these supercoiled MC DNAs, indicating that affinity-based targeting to supercoiled DNA regions by vTopo is unlikely. Similarly, the cleavage and religation rates of the MCs were not topologically dependent, but topoisomers with low superhelical densities were found to unwind more slowly than highly supercoiled topoisomers, suggesting that reduced torque at low superhelical densities leads to an increased number of cycles of cleavage and ligation before a successful unwinding event. The K271E charge reversal mutant has an impaired interaction with the rotating DNA segment that leads to an increase in the number of supercoils that were unwound per cleavage event. This result provides evidence that interactions of the enzyme with the rotating DNA segment can restrict the number of supercoils that are unwound. We infer that both superhelical density and transient contacts between vTopo and the rotating DNA determine the efficiency of supercoil unwinding. Such determinants are likely to be important in regulating the steady-state superhelical density of DNA domains in the cell.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN Superhelicoidal/química , ADN Viral/química , Virus de la Viruela/enzimología , Proteínas Virales/química , Sustitución de Aminoácidos , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Mutación Missense , Virus de la Viruela/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
20.
Biochemistry ; 53(48): 7680-92, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25408964

RESUMEN

Human uracil DNA glycosylase (hUNG) follows an extended reaction coordinate for locating rare uracil bases in genomic DNA. This process begins with diffusion-controlled engagement of undamaged DNA, followed by a damage search step in which the enzyme remains loosely associated with the DNA chain (translocation), and finally, a recognition step that allows the enzyme to efficiently bind and excise uracil when it is encountered. At each step along this coordinate, the enzyme must form DNA interactions that are highly specialized for either rapid damage searching or catalysis. Here we make extensive measurements of hUNG activity as a function of salt concentration to dissect the thermodynamic, kinetic, and electrostatic properties of key enzyme states along this reaction coordinate. We find that the interaction of hUNG with undamaged DNA is electrostatically driven at a physiological concentration of potassium ions (ΔGelect = -3.5 ± 0.5 kcal mol(-1)), with only a small nonelectrostatic contribution (ΔGnon = -2.0 ± 0.2 kcal mol(-1)). In contrast, the interaction with damaged DNA is dominated by the nonelectrostatic free energy term (ΔGnon = -7.2 ± 0.1 kcal mol(-1)), yet retains the nonspecific electrostatic contribution (ΔGelect = -2.3 ± 0.2 kcal mol(-1)). Stopped-flow kinetic experiments established that the salt sensitivity of damaged DNA binding originates from a reduction of kon, while koff is weakly dependent on salt. Similar findings were obtained from the salt dependences of the steady-state kinetic parameters, where the diffusion-controlled kcat/Km showed a salt dependence similar to kon, while kcat (limited by product release) was weakly dependent on salt. Finally, the salt dependence of translocation between two uracil sites separated by 20 bp in the same DNA chain was indistinguishable from that of kon. This result suggests that the transition-state for translocation over this spacing resembles that for DNA association from bulk solution and that hUNG escapes the DNA ion cloud during translocation. These findings provide key insights into how the ionic environment in cells influences the DNA damage search pathway.


Asunto(s)
Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/metabolismo , Aniones/metabolismo , ADN/química , ADN/metabolismo , Daño del ADN , Reparación del ADN , Entropía , Humanos , Cinética , Modelos Biológicos , Potasio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Electricidad Estática , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA