Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Science ; 287(5458): 1615-22, 2000 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-10698731

RESUMEN

Members of the cytochrome P450 superfamily catalyze the addition of molecular oxygen to nonactivated hydrocarbons at physiological temperature-a reaction that requires high temperature to proceed in the absence of a catalyst. Structures were obtained for three intermediates in the hydroxylation reaction of camphor by P450cam with trapping techniques and cryocrystallography. The structure of the ferrous dioxygen adduct of P450cam was determined with 0.91 angstrom wavelength x-rays; irradiation with 1.5 angstrom x-rays results in breakdown of the dioxygen molecule to an intermediate that would be consistent with an oxyferryl species. The structures show conformational changes in several important residues and reveal a network of bound water molecules that may provide the protons needed for the reaction.


Asunto(s)
Alcanfor 5-Monooxigenasa/química , Alcanfor 5-Monooxigenasa/metabolismo , Alcanfor/química , Alcanfor/metabolismo , Catálisis , Cristalización , Cristalografía por Rayos X , Electrones , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Enlace de Hidrógeno , Hidroxilación , Ligandos , Modelos Moleculares , Conformación Molecular , Oxígeno/química , Oxígeno/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Protones , Pseudomonas putida/enzimología , Agua/química , Agua/metabolismo
2.
Trends Biochem Sci ; 26(6): 369-76, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11406410

RESUMEN

Phosphotransfer-mediated signaling pathways allow cells to sense and respond to environmental stimuli. Autophosphorylating histidine protein kinases provide phosphoryl groups for response regulator proteins which, in turn, function as molecular switches that control diverse effector activities. Structural studies of proteins involved in two-component signaling systems have revealed a modular architecture with versatile conserved domains that are readily adapted to the specific needs of individual systems.


Asunto(s)
Proteínas Quinasas/metabolismo , Transducción de Señal , Histidina Quinasa , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteínas Quinasas/química , Relación Estructura-Actividad
3.
Curr Opin Struct Biol ; 5(6): 744-51, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8749361

RESUMEN

Many different types of studies are being combined to provide an increasingly detailed picture of the bacterial chemotaxis system. The structures of periplasmic receptors and a cytoplasmic response regulator, along with structures of domains of a membrane receptor, a receptor-modifying enzyme and a cytoplasmic histidine kinase, have been determined. These structures provide a basis for other work which is likely to open up new structural avenues.


Asunto(s)
Proteínas Bacterianas/química , Quimiotaxis , Escherichia coli/fisiología , Receptores de Superficie Celular/química , Salmonella typhimurium/fisiología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Modelos Moleculares , Conformación Proteica , Receptores de Superficie Celular/metabolismo , Salmonella typhimurium/química , Transducción de Señal
4.
Curr Opin Microbiol ; 1(2): 160-9, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10066483

RESUMEN

In bacteria, adaptive responses to changing environmental conditions are mediated by signal transduction systems that involve modular protein domains. Despite great diversity in the integration of domains into different systems, studies of individual components have revealed molecular strategies that are widely applicable. Studies of receptors have advanced our understanding of how information is transmitted across membranes, the determination of three-dimensional structures of domains of histidine protein kinase domains and response regulator proteins has begun to reveal the molecular basis of signaling via two-component phosphoryltransfer pathways, and the description of 'eukaryotic-like' protein domains involved in bacterial signaling has emphasized the universality of intracellular signaling mechanisms.


Asunto(s)
Bacterias/metabolismo , Transducción de Señal , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quimiotaxis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
5.
Structure ; 5(4): 545-58, 1997 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-9115443

RESUMEN

BACKGROUND: Flagellated bacteria swim towards favorable chemicals and away from deleterious ones. The sensing of chemoeffector gradients involves chemotaxis receptors, transmembrane proteins that detect stimuli through their periplasmic domains and transduce signals via their cytoplasmic domains to the downstream signaling components. Signaling outputs from chemotaxis receptors are influenced both by the binding of the chemoeffector ligand to the periplasmic domain and by methylation of specific glutamate residues on the cytoplasmic domain of the receptor. Methylation is catalyzed by CheR, an S-adenosylmethionine-dependent methyltransferase. CheR forms a tight complex with the receptor by binding a region of the receptors that is distinct from the methylation site. CheR belongs to a broad class of enzymes involved in the methylation of a variety of substrates. Until now, no structure from the class of protein methyltransferases has been characterized. RESULTS: The structure of the Salmonella typhimurium chemotaxis receptor methyltransferase CheR bound to S-adenosylhomocysteine, a product and inhibitor of the methylation reaction, has been determined at 2.0 A resolution. The structure reveals CheR to be a two-domain protein, with a smaller N-terminal helical domain linked through a single polypeptide connection to a larger C-terminal alpha/beta domain. The C-terminal domain has the characteristics of a nucleotide-binding fold, with an insertion of a small antiparallel beta sheet subdomain. The S-adenosylhomocysteine-binding site is formed mainly by the large domain, with contributions from residues within the N-terminal domain and the linker region. CONCLUSIONS: The CheR structure shares some structural similarities with small molecule DNA and RNA methyltransferases, despite a lack of sequence similarity among them. In particular, there is significant structural preservation of the S-adenosylmethionine-binding clefts; the specific length and conformation of a loop in the alpha/beta domain seems to be required for S-adenosylmethionine binding within these enzymes. Unique structural features of CheR, such as the beta subdomain, are probably necessary for CheR's specific interaction with its substrates, the bacterial chemotaxis receptors.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Conformación Proteica , S-Adenosilmetionina/metabolismo , Salmonella typhimurium/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Sustancias Macromoleculares , Metiltransferasas/aislamiento & purificación , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , S-Adenosilhomocisteína/metabolismo , Homología de Secuencia de Aminoácido , Programas Informáticos , Electricidad Estática
6.
Structure ; 5(1): 109-24, 1997 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-9016718

RESUMEN

BACKGROUND: The differential expression of the ompF and ompC genes is regulated by two proteins that belong to the two component family of signal transduction proteins: the histidine kinase, EnvZ, and the response regulator, OmpR. OmpR belongs to a subfamily of at least 50 response regulators with homologous C-terminal DNA-binding domains of approximately 98 amino acids. Sequence homology with DNA-binding proteins of known structure cannot be detected, and the lack of structural information has prevented understanding of many of this familys functional properties. RESULTS: We have determined the crystal structure of the Escherichia coli OmpR C-terminal domain at 1.95 A resolution. The structure consists of three alpha helices packed against two antiparallel beta sheets. Two helices, alpha2 and alpha3, and the ten residue loop connecting them constitute a variation of the helix-turn-helix (HTH) motif. Helix alpha3 and the loop connecting the two C-terminal beta strands, beta6 and beta7, are probable DNA-recognition sites. Previous mutagenesis studies indicate that the large loop connecting helices alpha2 and alpha3 is the site of interaction with the alpha subunit of RNA polymerase. CONCLUSIONS: OmpRc belongs to the family of 'winged helix-turn-helix' DNA-binding proteins. This relationship, and the results from numerous published mutagenesis studies, have helped us to interpret the functions of most of the structural elements present in this protein domain. The structure of OmpRc could be useful in helping to define the positioning of the alpha subunit of RNA polymerase in relation to transcriptional activators that are bound to DNA.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Ligasas de Carbono-Nitrógeno , Proteínas de Escherichia coli , Escherichia coli/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas , Sitios de Unión , Secuencia Conservada/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Secuencias Hélice-Giro-Hélice , Datos de Secuencia Molecular , Mutagénesis/genética , Mutación , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/química , Alineación de Secuencia , Transcripción Genética/genética
7.
Structure ; 7(3): R47-53, 1999 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10368305
8.
J Mol Biol ; 269(3): 301-12, 1997 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-9199401

RESUMEN

OmpR, a protein that regulates expression of outer membrane porin proteins in enteric bacteria, belongs to a large family of transcription factors. These transcription factors bind DNA and interact productively with RNA polymerase to activate transcription. The two functions, DNA-binding and transcriptional activation, have been localized within the 100 amino acid DNA-binding domain that characterizes members of the OmpR family. Both DNA binding and transcriptional activation by OmpR related proteins have remained poorly understood for lack of structural information or lack of sequence homology with transcription factors of known three-dimensional structure. The recently determined crystal structures of the Escherichia coli OmpR DNA-binding domain (OmpRc) have defined a new subfamily of "winged-helix-turn-helix" DNA-binding proteins. Structural elements of OmpRc can be assigned functional roles by analogy to other winged-helix DNA-binding proteins. A structure based sequence analysis of the OmpR family of transcription factors indicates specific roles for all conserved amino acid residues. Mutagenesis studies performed on several members of this family, OmpR, PhoB, ToxR and VirG, can now be interpreted with respect to the structure.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Factores de Transcripción/química , Secuencia de Aminoácidos , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Transcripción Genética
9.
J Mol Biol ; 250(2): 276-90, 1995 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-7608974

RESUMEN

Signaling activity of bacterial chemotaxis transmembrane receptors is modulated by reversible covalent modification of specific receptor glutamate residues. The level of receptor methylation results from the activities of a specific S-adenosylmethionine-dependent methyltransferase, CheR, and the CheB methylesterase, which catalyzes hydrolysis of receptor glutamine or methylglutamate side-chains to glutamic acid. The CheB methylesterase belongs to a large family of response regulator proteins in which N-terminal regulatory domains control the activities of C-terminal effector domains. The crystal structure of the catalytic domain of the Salmonella typhimurium CheB methylesterase has been determined at 1.75 A resolution. The domain has a modified, doubly wound alpha/beta fold in which one of the helices is replaced by an anti-parallel beta-hairpin. Previous biochemical and mutagenesis data, suggest that the methylester hydrolysis catalyzed by CheB proceeds through a mechanism involving a serine nucleophile. The methylesterase active site is tentatively identified as a cleft at the C-terminal edge of the beta-sheet containing residues Ser164, His190 and Asp286. The three-dimensional fold, and the arrangement of residues within the catalytic triad distinguishes the CheB methylesterase from any previously described serine protease or serine hydrolase.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Estructura Secundaria de Proteína , Salmonella typhimurium/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
10.
J Mol Biol ; 285(2): 555-66, 1999 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-9878429

RESUMEN

Escherichia coli OmpR is a transcription factor that regulates the differential expression of the porin genes ompF and ompC. Phosphorylated OmpR binds as a dimer to a 20-bp region of DNA consisting of two tandemly arranged 10-bp half-sites. Expression of the ompF gene is achieved by the hierarchical occupation of three adjacent 20-bp binding sites, designated F1, F2, and F3 and a distally located site, F4. Despite genetic, biochemical, and structural studies, specific details of the interaction between phosphorylated OmpR and the DNA remain unknown. We have linked the DNA cleaving moiety o-phenanthroline-copper to eight different sites within the DNA binding domain of OmpR in order to determine the orientation of the two OmpR monomers in the OmpR:F1 complex. Five of the resulting conjugates exhibited DNA cleaving activity, and four of these yielded patterns that could be used to construct a model of the OmpR:F1 complex. We propose that OmpR binds asymmetrically to the F1 site as a tandemly arranged dimer with each monomer having its recognition helix in the major groove. The N-terminal end of the recognition helix is promoter-proximal and flanked by "wings" W1 and W2 positioned proximally and distally, respectively, to the transcription start site of ompF. We further propose that the C-terminal end of the recognition helix makes the most extensive contacts with DNA and predict bases within the F1 site that are sufficiently close to be contacted by the recognition helix.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Huella de ADN , Desoxirribonucleasa I , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Porinas/genética , Conformación Proteica , Transactivadores/química , Transactivadores/genética
11.
J Mol Biol ; 307(4): 967-76, 2001 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-11286548

RESUMEN

The crystal structure of the unphosphorylated state of methylesterase CheB shows that the regulatory domain blocks access of substrate to the active site of the catalytic domain. Phosphorylation of CheB at Asp56 results in a catalytically active transiently phosphorylated enzyme with a lifetime of approximately two seconds. Solvent accessibility changes in this transiently phosphorylated state were probed by MALDI-TOF-detected amide hydrogen/deuterium exchange. No changes in solvent accessibility were seen in the regulatory domain upon phosphorylation of Asp56, but two regions in the catalytic domain (199-203 and 310-317) became more solvent accessible. These two regions flank the active site and contain domain-domain contact residues. Comparison with results from the isolated catalytic domain-containing C-terminal fragment of CheB (residues 147-349) showed that the increased solvent accessibility was less than would have occurred upon detachment of the regulatory domain. Thus, phosphorylation causes subtle changes in solvent accessibility at the interdomain interface of CheB.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Solventes/metabolismo , Amidas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Hidrógeno/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Protein Sci ; 5(7): 1429-33, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8819176

RESUMEN

A C-terminal fragment of the transcription factor OmpR has been crystallized using the sitting drop vapor-diffusion method. Crystals belong to the trigonal space-group P3n12 with cell dimensions a = b = 54.4 A, c = 135.5 A, and gamma = 120.00 degrees. A second crystal form has been obtained by soaking this crystal form in a cryo-buffer and flash-cooling to 108 K in a cold nitrogen stream. Crystals belong to the trigonal space-group P3n12 with cell dimensions a = b = 108.07 A, c = 131.81 A, and gamma = 120.00 degrees. Both crystal forms diffract to at least 2.3 A at a synchrotron light source. Single-site cysteine mutations have been introduced to provide mercury-binding sites for multiple isomorphous replacement.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Unión al ADN/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia
14.
Nat Struct Biol ; 5(6): 446-50, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9628482

RESUMEN

Signal transduction processes commonly involve reversible covalent modifications of receptors. Bacterial chemotaxis receptors are reversibly methylated at specific glutamate residues within coiled-coil regions of their cytoplasmic domains. Methylation is catalyzed by an S-adenosylmethionine-dependent protein methyltransferase, CheR, that binds to a specific sequence at the C-termini of some chemotaxis receptors. From this tethering point, CheR methylates neighboring receptor molecules. We report the crystal structure, determined to 2.2 A resolution, of a complex of the Salmonella typhimurium methyltransferase CheR bound to the methylation reaction product, S-adenosylhomocysteine (AdoHcy), and the C-terminal pentapeptide of the aspartate receptor, Tar. The structure indicates the basis for the specificity of interaction between the chemoreceptors and CheR and identifies a specific receptor binding motif incorporated in the CheR methyltransferase domain.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quimiotaxis , Proteínas de Escherichia coli , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Receptores de Superficie Celular , Secuencia de Aminoácidos , Ácido Aspártico/química , Sitios de Unión , Células Quimiorreceptoras , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Oligopéptidos/química , Receptores de Aminoácidos/química , S-Adenosilhomocisteína/metabolismo , Salmonella typhimurium
15.
J Bacteriol ; 169(7): 3301-11, 1987 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-3298217

RESUMEN

The cheZ gene is the most distal of five genes that comprise the Meche operon of the Salmonella typhimurium chemotaxis system. We have determined the sequence of the cheZ gene along with an 800-nucleotide flanking region at its 3' end. The flanking sequence contains an open reading frame that probably corresponds to the 5' end of flaM. The cheZ coding sequence predicts an extremely acidic, hydrophilic protein with a molecular weight of 23,900. We have purified and characterized this protein. N-terminal analysis of pure CheZ yields an amino acid sequence identical to that predicted by the nucleotide sequence except that the amino-terminal methionine residue is modified by N methylation. The purified CheZ protein exhibits a native molecular weight of 115,000, but in cell extracts the majority of CheZ exists as a much larger aggregate (Mr greater than 500,000). Under these conditions, CheZ appears to be a homopolymer composed of at least 20 monomeric subunits.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Quimiotaxis , Proteínas de la Membrana/aislamiento & purificación , Salmonella typhimurium/análisis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Secuencia de Bases , Hidrolasas de Éster Carboxílico/metabolismo , Mapeo Cromosómico , Genes Bacterianos , Técnicas Inmunológicas , Sustancias Macromoleculares , Proteínas Quimiotácticas Aceptoras de Metilo , Peso Molecular , Operón , Unión Proteica , Solubilidad
16.
J Struct Biol ; 124(2-3): 189-200, 1998 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10049806

RESUMEN

Most motile bacteria are capable of directing their movement in response to chemical gradients, a behavior known as chemotaxis. The signal transduction system that mediates chemotaxis in enteric bacteria consists of a set of six cytoplasmic proteins that couple stimuli sensed by a family of transmembrane receptors to behavioral responses generated by the flagellar motors. Signal transduction occurs via a phosphotransfer pathway involving a histidine protein kinase, CheA, and a response regulator protein, CheY, that in its phosphorylated state, modulates the direction of flagellar rotation. Two auxiliary proteins, CheW and CheZ, and two receptor modification enzymes, methylesterase CheB and methyltransferase CheR, influence the flux of phosphoryl groups within this central pathway. This paper focuses on structural characteristics of the four signaling proteins (CheA, CheY, CheB, and CheR) for which NMR or x-ray crystal structures have been determined. The proteins are examined with respect to their signaling activities that involve reversible protein modifications and transient assembly of macromolecular complexes. A variety of data suggest conformational flexibility of these proteins, a feature consistent with their multiple roles in a dynamic signaling pathway.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Quimiotaxis , Flagelos/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Proteínas Quimiotácticas Aceptoras de Metilo , Metiltransferasas/química , Metiltransferasas/fisiología , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Transducción de Señal
17.
J Bacteriol ; 178(19): 5579-85, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8824600

RESUMEN

As a step towards studying representative members of the two-component family of signal transduction proteins, we have cloned genes encoding a histidine protein kinase and a response regulator from the hyperthermophilic bacterium Thermotoga maritima. The genes have been designated HpkA and drrA, respectively. The deduced HpkA sequence contains all five characteristic histidine protein kinase motifs with the same relative order and spacing found in the mesophilic bacterial proteins. A hydropathy profile indicates that HpkA possesses only one membrane-spanning segment located at the extreme N terminus. The N-terminal region of DrrA exhibits all of the characteristics of the conserved domains of mesophilic bacterial response regulators, and the C-terminal region shows high similarity to the OmpR-PhoB subfamily of DNA-binding proteins. Recombinant T. maritima proteins, truncated HpkA lacking the putative membrane-spanning N- terminal amino acids and DrrA, were expressed in Escherichia coli. Partial purification of T. maritima proteins was achieved by heat denaturation of E. coli host proteins. In an in vitro assay, truncated HpkA protein was autophosphorylated in the presence of ATP. Thus, the N-terminal hydrophobic region is not required for kinase activity. Phosphotransfer between truncated HpkA and DrrA was demonstrated in vitro with the partially purified proteins. The phosphorylation reactions were strongly temperature dependent. The results indicate that the recombinant T. maritima two-component proteins overexpressed in E. coli are stable as well as enzymatically active at elevated temperatures.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Genes Bacterianos , Bacterias Anaerobias Gramnegativas/genética , Proteínas Quinasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Histidina Quinasa , Calor , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transducción de Señal/genética
18.
Anal Biochem ; 283(2): 222-7, 2000 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10906243

RESUMEN

Phosphoramidate serves as a useful phosphodonor reagent in protein and peptide phosphorylation, notably in studying two-component signal transduction systems in which low molecular weight phosphodonors can substitute for the phosphodonor function of histidine protein kinases in in vitro phosphorylation studies of response regulator proteins. A convenient method for the synthesis of radiolabeled phosphoramidate has not been developed, and this has limited its broader use. Here we report the synthesis of radiolabeled ammonium hydrogen phosphoramidate [(NH(4))H(32)PO(3)NH(2)] which is achieved by activation of [(32)P]orthophosphate with ethyl isocyanate followed by aminolysis with ammonium hydroxide to form the desired phosphoramidate. The procedure is conveniently carried out in a microfuge tube and requires only two successive precipitation steps to obtain pure ammonium hydrogen phosphoramidate. Molar yields of 15-30% and specific activities of 10-20 Ci/mol are readily achieved. Phosphorylation of microgram quantities of response regulator proteins CheY, CheB, and DrrA is shown. Low level, but detectable, nonspecific phosphorylation was observed for reactions near ambient temperatures when substrate response regulators lacking the active site aspartate but containing histidine residues are used. More significant levels of nonspecific phosphorylation were observed for reactions at elevated temperatures when using a nonresponse regulator control protein (RNase A).


Asunto(s)
Amidas/síntesis química , Ácidos Fosfóricos/síntesis química , Amidas/química , Proteínas Bacterianas/química , Cromatografía en Capa Delgada/métodos , Proteínas de la Membrana/química , Proteínas Quimiotácticas Aceptoras de Metilo , Peso Molecular , Ácidos Fosfóricos/química , Radioisótopos de Fósforo , Fosforilación , Salmonella typhimurium/química
19.
Microbiol Rev ; 53(4): 450-90, 1989 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-2556636

RESUMEN

Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Fenómenos Fisiológicos Bacterianos , Quimiotaxis/fisiología , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Fosfatos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Equilibrio Hidroelectrolítico/fisiología
20.
Biochemistry ; 29(23): 5436-42, 1990 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-2201404

RESUMEN

Signal transduction in bacterial chemotaxis involves transfer of a phosphoryl group between the cytoplasmic proteins CheA and CheY. In addition to the established metal ion requirement for autophosphorylation of CheA, divalent magnesium ions are necessary for the transfer of phosphate from CheA to CheY. The work described here demonstrates via fluorescence studies that CheY contains a magnesium ion binding site. This site is a strong candidate for the metal ion site required to facilitate phosphotransfer from phospho-CheA to CheY. The diminished magnesium ion interaction with CheY mutant D13N and the lack of metal ion binding to D57N along with significant reduction in phosphotransfer to these two mutants are in direct contrast to the behavior of wild-type CheY. This supports the hypothesis that the acidic pocket formed by Asp13 and Asp57 is essential to metal binding and phosphotransfer activity. Metal ion is also required for the dephosphorylation reaction, raising the possibility that the phosphotransfer and hydrolysis reactions occur by a common metal-phosphoprotein transition-state intermediate. The highly conserved nature of the proposed metal ion binding site and site of phosphorylation within the large family of phosphorylated regulatory proteins that are homologous to CheY supports the hypothesis that all these proteins function by a similar catalytic mechanism.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana/metabolismo , Metales/metabolismo , Sitios de Unión , Cationes Bivalentes , Factores Quimiotácticos/metabolismo , Magnesio/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Estructura Molecular , Fósforo/metabolismo , Conformación Proteica , Salmonella typhimurium/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA