Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 8: 568092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015019

RESUMEN

Hepatic development requires multiple sequential physicochemical environmental changes in an embryo, and human pluripotent stem cells (hPSCs) allow for the elucidation of this embryonic developmental process. However, the current in vitro methods for hPSC-hepatic differentiation, which employ various biochemical substances, produce hPSC-derived hepatocytes with less functionality than primary hepatocytes, due to a lack of physical stimuli, such as heart beating. Here, we developed a microfluidic platform that recapitulates the beating of a human embryonic heart to improve the functionality of hepatoblasts derived from hepatic endoderm (HE) in vitro. This microfluidic platform facilitates the application of multiple mechanical stretching forces, to mimic heart beating, to cultured hepatic endoderm cells to identify the optimal stimuli. Results show that stimulated HE-derived hepatoblasts increased cytochrome P450 3A (CYP3A) metabolic activity, as well as the expression of hepatoblast functional markers (albumin, cytokeratin 19 and CYP3A7), compared to unstimulated hepatoblasts. This approach of hepatic differentiation from hPSCs with the application of mechanical stimuli will facilitate improved methods for studying human embryonic liver development, as well as accurate pharmacological testing with functional liver cells.

2.
IEEE Trans Biomed Eng ; 66(8): 2402-2412, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30605086

RESUMEN

OBJECTIVE: Neural stimulation with tethered, electrically activated probes is damaging to neural tissue and lacks good spatial selectivity and stable chronic performance. The photoelectric effect, which converts incident light into electric potential and heat, provides an opportunity for a tetherless stimulation method. We propose a novel stimulation paradigm that relies on the photoelectric effect to stimulate neurons around a free-floating, ultrasmall (7-8 µm diameter) carbon fiber probe. METHODS: A two-photon microscope induced photo-stimulation with a near-infrared laser. Chronoamperometry and chronopotentiometry were used to characterize the electrochemical properties of photo-stimulation, while the fluorescence of Rhodamine-B was used to quantify temperature changes. RESULTS: Photo-stimulation caused a local cathodic potential pulse with minimal leakage current. Stimulation induced voltage deflections of 0.05-0.4 V in vitro, varying linearly with the power of the laser source (5-40 mW). Temperature increases in the immediate vicinity of the electrode were limited to 2.5 °C, suggesting that this stimulation modality can be used without inducing heat damage. Successful stimulation was supported in vivo by increased calcium fluorescence in local neurons at stimulation onset in a transgenic GCaMP-3 mouse model. Furthermore, cells activated by photo-stimulation were closer to the electrode than in electrical stimulation under similar conditions, indicating increased spatial precision. CONCLUSION: Our results support the hypothesis that the proposed photoelectric method for neural stimulation is effective. SIGNIFICANCE: Photoelectric stimulation is precise and avoids the need for a potentially destructive tether, making it a promising alternative to electrical stimulation.


Asunto(s)
Fibra de Carbono/química , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Estimulación Luminosa/instrumentación , Animales , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Electrodos , Diseño de Equipo , Ratones , Ratones Transgénicos , Fantasmas de Imagen , Procesos Fotoquímicos
3.
Biosystems ; 171: 74-79, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30053414

RESUMEN

Here we present Tellurium, a Python-based environment for model building, simulation, and analysis that facilitates reproducibility of models in systems and synthetic biology. Tellurium is a modular, cross-platform, and open-source simulation environment composed of multiple libraries, plugins, and specialized modules and methods. Tellurium is a self-contained modeling platform which comes with a fully configured Python distribution. Two interfaces are provided, one based on the Spyder IDE which has an accessible user interface akin to MATLAB and a second based on the Jupyter Notebook, which is a format that contains live code, equations, visualizations, and narrative text. Tellurium uses libRoadRunner as the default SBML simulation engine which supports deterministic simulations, stochastic simulations, and steady-state analyses. Tellurium also includes Antimony, a human-readable model definition language which can be converted to and from SBML. Other standard Python scientific libraries such as NumPy, SciPy, and matplotlib are included by default. Additionally, we include several user-friendly plugins and advanced modules for a wide-variety of applications, ranging from complex algorithms for bifurcation analysis to multidimensional parameter scanning. By combining multiple libraries, plugins, and modules into a single package, Tellurium provides a unified but extensible solution for biological modeling and analysis for both novices and experts. AVAILABILITY: tellurium.analogmachine.org.


Asunto(s)
Modelos Biológicos , Biología Sintética , Biología de Sistemas , Telurio/química , Reproducibilidad de los Resultados
4.
Micromachines (Basel) ; 9(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30424427

RESUMEN

Implantable devices to measure neurochemical or electrical activity from the brain are mainstays of neuroscience research and have become increasingly utilized as enabling components of clinical therapies. In order to increase the number of recording channels on these devices while minimizing the immune response, flexible electrodes under 10 µm in diameter have been proposed as ideal next-generation neural interfaces. However, the representation of motion artifact during neurochemical or electrophysiological recordings using ultra-small, flexible electrodes remains unexplored. In this short communication, we characterize motion artifact generated by the movement of 7 µm diameter carbon fiber electrodes during electrophysiological recordings and fast-scan cyclic voltammetry (FSCV) measurements of electroactive neurochemicals. Through in vitro and in vivo experiments, we demonstrate that artifact induced by motion can be problematic to distinguish from the characteristic signals associated with recorded action potentials or neurochemical measurements. These results underscore that new electrode materials and recording paradigms can alter the representation of common sources of artifact in vivo and therefore must be carefully characterized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA