Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 36(3): e4866, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321360

RESUMEN

Ex vivo diffusion imaging can be used to study healthy and pathological tissue microstructure in the rodent brain with high resolution, providing a link between in vivo MRI and ex vivo microscopy techniques. Major challenges for the successful acquisition of ex vivo diffusion imaging data however are changes in the relaxivity and diffusivity of brain tissue following perfusion fixation. In this study we address this question by examining the combined effects of tissue preparation factors that influence signal-to-noise ratio (SNR) and consequently image quality, including fixative concentration, contrast agent concentration and tissue rehydration time. We present an optimization strategy combining these factors to manipulate the T 1 and T 2 of fixed tissue and maximize SNR efficiency. We apply this strategy in the rat brain, for a diffusion-weighted spin echo protocol with TE = 27 ms on a 9.4 T scanner with a 39 mm volume coil and 660 mT/m 114 mm gradient insert. We used a reduced fixative concentration of 2% paraformaldehyde (PFA), rehydration time more than 20 days, 15 mM Gd-DTPA in perfusate and TR 250 ms. This resulted in a doubling of SNR and an increase in SNR per unit time of 135% in cortical grey matter and 88% in white matter compared with 4% PFA and no contrast agent. This improved SNR efficiency enabled the acquisition of excellent-quality high-resolution (78 µ m isotropic voxel size) diffusion data with b = 4000 s/mm 2 , 30 diffusion directions and a field of view of 40 × 13 × 18 mm3 in less than 4 days. It was also possible to achieve comparable data quality for a standard resolution (150 µ m) diffusion dataset in 2 1 4 h. In conclusion, the tissue optimization strategy presented here may be used to improve SNR, increase spatial resolution and/or allow faster acquisitions in preclinical ex vivo diffusion MRI experiments.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Fijadores , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Sustancia Gris
2.
Artículo en Inglés | MEDLINE | ID: mdl-36075529

RESUMEN

BACKGROUND: Although many studies have explored atypicalities in gray matter (GM) and white matter (WM) morphology of autism, most of them relied on unimodal analyses that did not benefit from the likelihood that different imaging modalities may reflect common neurobiology. We aimed to establish brain patterns of modalities that differentiate between individuals with and without autism and explore associations between these brain patterns and clinical measures in the autism group. METHODS: We studied 183 individuals with autism and 157 nonautistic individuals (age range, 6-30 years) in a large, deeply phenotyped autism dataset (EU-AIMS LEAP [European Autism Interventions-A Multicentre Study for Developing New Medications Longitudinal European Autism Project]). Linked independent component analysis was used to link all participants' GM volume and WM diffusion tensor images, and group comparisons of modality shared variances were examined. Subsequently, we performed univariate and multivariate brain-behavior correlation analyses to separately explore the relationships between brain patterns and clinical profiles. RESULTS: One multimodal pattern was significantly related to autism. This pattern was primarily associated with GM volume in bilateral insula and frontal, precentral and postcentral, cingulate, and caudate areas and co-occurred with altered WM features in the superior longitudinal fasciculus. The brain-behavior correlation analyses showed a significant multivariate association primarily between brain patterns that involved variation of WM and symptoms of restricted and repetitive behavior in the autism group. CONCLUSIONS: Our findings demonstrate the assets of integrated analyses of GM and WM alterations to study the brain mechanisms that underpin autism and show that the complex clinical autism phenotype can be interpreted by brain covariation patterns that are spread across the brain involving both cortical and subcortical areas.


Asunto(s)
Trastorno Autístico , Sustancia Blanca , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo , Sustancia Gris/diagnóstico por imagen
3.
Chem Sci ; 8(10): 6871-6880, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29147512

RESUMEN

The photosystem II reaction centre is the photosynthetic complex responsible for oxygen production on Earth. Its water splitting function is particularly favoured by the formation of a stable charge separated state via a pathway that starts at an accessory chlorophyll. Here we envision a photovoltaic device that places one of these complexes between electrodes and investigate how the mean current and its fluctuations depend on the microscopic interactions underlying charge separation in the pathway considered. Our results indicate that coupling to well resolved vibrational modes does not necessarily offer an advantage in terms of power output but can lead to photo-currents with suppressed noise levels characterizing a multi-step ordered transport process. Besides giving insight into the suitability of these complexes for molecular-scale photovoltaics, our work suggests a new possible biological function for the vibrational environment of photosynthetic reaction centres, namely, to reduce the intrinsic current noise for regulatory processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA