Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
For Ecol Manage ; 536: 120847, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37193248

RESUMEN

European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain. Derived from Euphresco project 'Brownspotrisk,' this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portalofforestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia. The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Preliminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions. Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts' genetic make-up, but could also reflect the significant variation in L. acicola populations and lineages found across Europe. This study served to highlight significant gaps in our understanding of the pathogen's behaviour. Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe.

2.
Sci Rep ; 7(1): 16638, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192156

RESUMEN

Worldwide, more than 1 billion people suffer from allergic diseases. However, until now it is not fully understood how certain proteins can induce allergic immune responses, while others cannot. Studies suggest that allergenicity is a process not only determined by properties of the allergen itself but also by costimulatory factors, that are not classically associated with allergic reactions. To investigate the allergenicity of the major birch pollen allergen Bet v 1 and the impact of adjuvants associated with pollen, e.g. lipopolysaccharide (LPS), we performed quantitative proteome analysis to study the activation of monocyte-derived dendritic cells (moDCs). Thus, we treated cells with birch pollen extract (BPE), recombinant Bet v 1, and LPS followed by proteomic profiling via high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) using isobaric labelling. Enrichment and pathway analysis revealed the influence of regulated proteins especially in cytokine signalling and dendritic cell activation. We found highly regulated, but differentially expressed proteins after treatment with BPE and LPS, whereas the cellular response to Bet v 1 was limited. Our findings lead to the conclusion that Bet v 1 needs a specific "allergen context" involving cofactors apart from LPS to induce an immune response in human moDCs.


Asunto(s)
Alérgenos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Proteoma , Proteómica , Análisis de Varianza , Biomarcadores , Biología Computacional/métodos , Citocinas/metabolismo , Citotoxicidad Inmunológica , Ontología de Genes , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Inmunofenotipificación , Lipopolisacáridos/inmunología , Anotación de Secuencia Molecular , FN-kappa B/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA