Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 13(5): e1006412, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28552953

RESUMEN

Profilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein. Compared to classical profilins, apicomplexan profilins contain an additional arm-like ß-hairpin motif, which we show here to be critically involved in actin binding. Through comparative analysis using two profilin mutants, we reveal this motif to be implicated in gliding motility of Plasmodium berghei sporozoites, the rapidly migrating forms of a rodent malaria parasite transmitted by mosquitoes. Force measurements on migrating sporozoites and molecular dynamics simulations indicate that the interaction between actin and profilin fine-tunes gliding motility. Our data suggest that evolutionary pressure to achieve efficient high-speed gliding has resulted in a unique profilin-actin interface in these parasites.


Asunto(s)
Actinas/metabolismo , Malaria/parasitología , Plasmodium berghei/citología , Plasmodium berghei/metabolismo , Profilinas/metabolismo , Proteínas Protozoarias/metabolismo , Actinas/genética , Animales , Movimiento Celular , Femenino , Humanos , Ratones Endogámicos C57BL , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Profilinas/genética , Unión Proteica , Proteínas Protozoarias/genética , Esporozoítos/citología , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo
2.
Nano Lett ; 11(9): 3676-80, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21838252

RESUMEN

Bundles of filamentous actin are dominant cytoskeletal structures, which play a crucial role in various cellular processes. As yet quantifying the fundamental interaction between two individual actin filaments forming the smallest possible bundle has not been realized. Applying holographic optical tweezers integrated with a microfluidic platform, we were able to measure the forces between two actin filaments during bundle formation. Quantitative analysis yields forces up to 0.2 pN depending on the concentration of bundling agents.


Asunto(s)
Actinas/química , Biofisica/métodos , Adenosina Trifosfato/química , Animales , Citoesqueleto/metabolismo , Electrólitos , Humanos , Iones , Microfluídica , Nematodos , Pinzas Ópticas , Óptica y Fotónica , Reproducibilidad de los Resultados , Estrés Mecánico
3.
ACS Nano ; 10(2): 2091-102, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26792112

RESUMEN

Migration of malaria parasites is powered by a myosin motor that moves actin filaments, which in turn link to adhesive proteins spanning the plasma membrane. The retrograde flow of these adhesins appears to be coupled to forward locomotion. However, the contact dynamics between the parasite and the substrate as well as the generation of forces are complex and their relation to retrograde flow is unclear. Using optical tweezers we found retrograde flow rates up to 15 µm/s contrasting with parasite average speeds of 1-2 µm/s. We found that a surface protein, TLP, functions in reducing retrograde flow for the buildup of adhesive force and that actin dynamics appear optimized for the generation of force but not for maximizing the speed of retrograde flow. These data uncover that TLP acts by modulating actin dynamics or actin filament organization and couples retrograde flow to force production in malaria parasites.


Asunto(s)
Movimiento Celular/fisiología , Malaria/parasitología , Plasmodium berghei/fisiología , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Esporozoítos/fisiología , Actinas/química , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Ratones , Plasmodium berghei/química , Esporozoítos/química
4.
ACS Nano ; 6(6): 4648-62, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22568891

RESUMEN

Plasmodium sporozoite motility is essential for establishing malaria infections. It depends on initial adhesion to a substrate as well as the continuous turnover of discrete adhesion sites. Adhesion and motility are mediated by a dynamic actin cytoskeleton and surface proteins. The mode of adhesion formation and the integration of adhesion forces into fast and continuous forward locomotion remain largely unknown. Here, we use optical tweezers to directly trap individual parasites and probe adhesion formation. We find that sporozoites lacking the surface proteins TRAP and S6 display distinct defects in initial adhesion; trap(-) sporozoites adhere preferentially with their front end, while s6(-) sporozoites show no such preference. The cohesive strength of the initial adhesion site is differently affected by actin filament depolymerization at distinct adhesion sites along the parasite for trap(-) and s6(-) sporozoites. These spatial differences between TRAP and S6 in their functional interaction with actin filaments show that these proteins have nonredundant roles during adhesion and motility. We suggest that complex protein-protein interactions and signaling events govern the regulation of parasite gliding at different sites along the parasite. Investigating how these events are coordinated will be essential for our understanding of sporozoite gliding motility, which is crucial for malaria infection. Laser tweezers will be a valuable part of the toolset.


Asunto(s)
Actinas/química , Moléculas de Adhesión Celular/química , Pinzas Ópticas , Plasmodium falciparum/química , Mapeo de Interacción de Proteínas/métodos , Proteínas Protozoarias/química , Adhesividad , Sitios de Unión , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA