Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Pathol ; 194(8): 1443-1457, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705380

RESUMEN

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. A murine model of lipopolysaccharide (LPS)-induced resolving ARDS was used to study their role in ARDS. The development of ARDS was confirmed after LPS instillation, which was resolved 14 days after onset. Immunofluorescence and flow cytometry showed early expansion of neural-glial antigen 2+ ß-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ ß-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, these data indicate that lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.


Asunto(s)
Lipopolisacáridos , Pericitos , Síndrome de Dificultad Respiratoria , Animales , Pericitos/patología , Pericitos/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Lipopolisacáridos/farmacología , Ratones , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Transducción de Señal , Células Endoteliales/metabolismo , Células Endoteliales/patología
2.
Int J Mol Sci ; 21(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392778

RESUMEN

Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.


Asunto(s)
Tejido Adiposo/citología , Quimiocina CXCL12/farmacología , Interleucina-4/farmacología , Músculo Esquelético/lesiones , Regeneración , Células del Estroma/trasplante , Tejido Adiposo/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Ratones , Músculo Esquelético/fisiología , Ratas , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Cicatrización de Heridas
3.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284492

RESUMEN

In case of large injuries of skeletal muscles the pool of endogenous stem cells, i.e., satellite cells, might be not sufficient to secure proper regeneration. Such failure in reconstruction is often associated with loss of muscle mass and excessive formation of connective tissue. Therapies aiming to improve skeletal muscle regeneration and prevent fibrosis may rely on the transplantation of different types of stem cell. Among such cells are adipose tissue-derived stromal cells (ADSCs) which are relatively easy to isolate, culture, and manipulate. Our study aimed to verify applicability of ADSCs in the therapies of severely injured skeletal muscles. We tested whether 3D structures obtained from Matrigel populated with ADSCs and transplanted to regenerating mouse gastrocnemius muscles could improve the regeneration. In addition, ADSCs used in this study were pretreated with myoblasts-conditioned medium or anti-TGFß antibody, i.e., the factors modifying their ability to proliferate, migrate, or differentiate. Analyses performed one week after injury allowed us to show the impact of 3D cultured control and pretreated ADSCs at muscle mass and structure, as well as fibrosis development immune response of the injured muscle.


Asunto(s)
Tejido Adiposo/citología , Colágeno/farmacología , Laminina/farmacología , Músculo Esquelético/patología , Proteoglicanos/farmacología , Regeneración/efectos de los fármacos , Animales , Anticuerpos/farmacología , Forma de la Célula/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Combinación de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/trasplante , Factor de Crecimiento Transformador beta/metabolismo
4.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412558

RESUMEN

Pluripotent stem cells convert into skeletal muscle tissue during teratoma formation or chimeric animal development. Thus, they are characterized by naive myogenic potential. Numerous attempts have been made to develop protocols enabling efficient and safe conversion of pluripotent stem cells into functional myogenic cells in vitro. Despite significant progress in the field, generation of myogenic cells from pluripotent stem cells is still challenging-i.e., currently available methods require genetic modifications, animal-derived reagents, or are long lasting-and, therefore, should be further improved. In the current study, we investigated the influence of interleukin 4, a factor regulating inter alia migration and fusion of myogenic cells and necessary for proper skeletal muscle development and maintenance, on pluripotent stem cells. We assessed the impact of interleukin 4 on proliferation, selected gene expression, and ability to fuse in case of both undifferentiated and differentiating mouse embryonic stem cells. Our results revealed that interleukin 4 slightly improves fusion of pluripotent stem cells with myoblasts leading to the formation of hybrid myotubes. Moreover, it increases the level of early myogenic genes such as Mesogenin1, Pax3, and Pax7 in differentiating embryonic stem cells. Thus, interleukin 4 moderately enhances competence of mouse pluripotent stem cells for myogenic conversion.


Asunto(s)
Interleucina-4/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Autorrenovación de las Células/genética , Técnicas de Cocultivo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Interleucina-4/genética , Interleucina-4/farmacología , Ratones , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Células Madre Pluripotentes/efectos de los fármacos
5.
Muscle Nerve ; 55(3): 400-409, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27396429

RESUMEN

INTRODUCTION: Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so-called fast-twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow-twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. METHODS: We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. RESULTS: Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. CONCLUSIONS: Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow- and fast-twitch muscles. Muscle Nerve 55: 400-409, 2017.


Asunto(s)
Inflamación/etiología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Regeneración/fisiología , Acetiltransferasas/metabolismo , Animales , Citocinas/metabolismo , Citometría de Flujo , Laminina/metabolismo , Macrófagos/metabolismo , Masculino , Enfermedades Musculares/complicaciones , Cadenas Pesadas de Miosina/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Ratas , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo
6.
J Muscle Res Cell Motil ; 36(6): 395-404, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26613733

RESUMEN

The skeletal muscle injury triggers the inflammatory response which is crucial for damaged muscle fiber degradation and satellite cell activation. Immunodeficient mice are often used as a model to study the myogenic potential of transplanted human stem cells. Therefore, it is crucial to elucidate whether such model truly reflects processes occurring under physiological conditions. To answer this question we compared skeletal muscle regeneration of BALB/c, i.e. animals producing all types of inflammatory cells, and SCID mice. Results of our study documented that initial stages of muscles regeneration in both strains of mice were comparable. However, lower number of mononucleated cells was noticed in regenerating SCID mouse muscles. Significant differences in the number of CD14-/CD45+ and CD14+/CD45+ cells between BALB/c and SCID muscles were also observed. In addition, we found important differences in M1 and M2 macrophage levels of BALB/c and SCID mouse muscles identified by CD68 and CD163 markers. Thus, our data show that differences in inflammatory response during muscle regeneration, were not translated into significant modifications in muscle regeneration.


Asunto(s)
Inflamación/patología , Músculo Esquelético/patología , Regeneración/fisiología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología
7.
Biol Cell ; 104(12): 722-37, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22978573

RESUMEN

BACKGROUND INFORMATION: The regeneration of skeletal muscles involves satellite cells, which are muscle-specific precursor cells. In muscles, injured either mechanically or as a consequence of a disease, such as muscular dystrophy, local release of the growth factors and cytokines leads to satellite cells activation, proliferation and differentiation of the resulting myoblasts, followed by the formation of new myofibres. Various cell types, such as stem and progenitor cells, originating from other tissues different than the muscle, are also able to follow a myogenic program. Participation of these cells in the repair process depends on their precise mobilisation to the site of the injury. RESULTS: In this study, we showed that stromal-derived factor-1 (Sdf-1) impacts on the mobilisation of CXC chemokine receptor (Cxcr)4-positive cells and improves skeletal muscle regeneration. Analysis of isolated and in vitro cultured satellite cells showed that Sdf-1 did not influence myoblasts proliferation and expression of myogenic regulatory transcription factors but induced migration of the myoblasts in Cxcr4-dependent ways. This phenomenon was also associated with the increased activity of crucial extracellular matrix modifiers, i.e. metalloproteases Mmp-2 and Mmp-9. CONCLUSIONS: Thus, positive impact of Sdf-1 on muscle regeneration is related to the mobilisation of endogenous cells, that is satellite cells and myoblasts, as well as non-muscle stem cells, expressing Cxcr4 and CD34.


Asunto(s)
Antígenos CD34/biosíntesis , Quimiocina CXCL12/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Receptores CXCR4/biosíntesis , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Proliferación Celular , Matriz Extracelular/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas
8.
Sci Rep ; 13(1): 15046, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699959

RESUMEN

Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.


Asunto(s)
Células Endoteliales , MicroARNs , Comunicación Celular/genética , Mioblastos , Células Madre , Fibrinógeno , MicroARNs/genética
9.
Stem Cell Res Ther ; 14(1): 204, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582765

RESUMEN

BACKGROUND: Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS: We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS: SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS: SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.


Asunto(s)
Diferenciación Celular , Quimiocina CXCL12 , MicroARNs , Músculo Esquelético , Receptores Notch , Células Satélite del Músculo Esquelético , Animales , Ratones , Movimiento Celular , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , MicroARNs/genética , Receptores Notch/metabolismo , Quimiocina CXCL12/metabolismo
10.
Stem Cell Rev Rep ; 18(6): 2164-2178, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35190967

RESUMEN

BACKGROUND: Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. METHODS: Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. RESULTS: We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. CONCLUSIONS: Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Diferenciación Celular/genética , Humanos , Ratones , Mioblastos
11.
Cells ; 11(18)2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36139418

RESUMEN

For many years optimal treatment for dysfunctional skeletal muscle characterized, for example, by impaired or limited regeneration, has been searched. Among the crucial factors enabling its development is finding the appropriate source of cells, which could participate in tissue reconstruction or serve as an immunomodulating agent (limiting immune response as well as fibrosis, that is, connective tissue formation), after transplantation to regenerating muscles. MSCs, including those derived from bone marrow, are considered for such applications in terms of their immunomodulatory properties, as their naive myogenic potential is rather limited. Injection of autologous (syngeneic) or allogeneic BMSCs has been or is currently being tested and compared in many potential clinical treatments. In the present study, we verified which approach, that is, the transplantation of either syngeneic or allogeneic BMSCs or the injection of BMSC-conditioned medium, would be the most beneficial for skeletal muscle regeneration. To properly assess the influence of the tested treatments on the inflammation, the experiments were carried out using immunocompetent mice, which allowed us to observe immune response. Combined analysis of muscle histology, immune cell infiltration, and levels of selected chemokines, cytokines, and growth factors important for muscle regeneration, showed that muscle injection with BMSC-conditioned medium is the most beneficial strategy, as it resulted in reduced inflammation and fibrosis development, together with enhanced new fiber formation, which may be related to, i.e., elevated level of IGF-1. In contrast, transplantation of allogeneic BMSCs to injured muscles resulted in a visible increase in the immune response, which hindered regeneration by promoting connective tissue formation. In comparison, syngeneic BMSC injection, although not detrimental to muscle regeneration, did not result in such significant improvement as CM injection.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Fibrosis , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Músculo Esquelético
12.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685722

RESUMEN

Pluripotent stem cells (PSCs) are characterized by the ability to self-renew as well as undergo multidirectional differentiation. Culture conditions have a pivotal influence on differentiation pattern. In the current study, we compared the fate of mouse PSCs using two culture media: (1) chemically defined, free of animal reagents, and (2) standard one relying on the serum supplementation. Moreover, we assessed the influence of selected regulators (WNTs, SHH) on PSC differentiation. We showed that the differentiation pattern of PSCs cultured in both systems differed significantly: cells cultured in chemically defined medium preferentially underwent ectodermal conversion while their endo- and mesodermal differentiation was limited, contrary to cells cultured in serum-supplemented medium. More efficient ectodermal differentiation of PSCs cultured in chemically defined medium correlated with higher activity of SHH pathway while endodermal and mesodermal conversion of cells cultured in serum-supplemented medium with higher activity of WNT/JNK pathway. However, inhibition of either canonical or noncanonical WNT pathway resulted in the limitation of endo- and mesodermal conversion of PSCs. In addition, blocking WNT secretion led to the inhibition of PSC mesodermal differentiation, confirming the pivotal role of WNT signaling in this process. In contrast, SHH turned out to be an inducer of PSC ectodermal, not mesodermal differentiation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Proteínas Hedgehog/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Vía de Señalización Wnt , Animales , Biomarcadores/metabolismo , Ciclo Celular , Linaje de la Célula , Células Cultivadas , Ectodermo/citología , Cuerpos Embrioides/citología , Mesodermo/citología , Ratones , Proteínas Wnt/metabolismo
13.
Stem Cell Res Ther ; 12(1): 448, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372911

RESUMEN

BACKGROUND: The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. METHODS: In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. RESULTS: We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. CONCLUSIONS: We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Médula Ósea , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Hipoxia , Ratones , Músculo Esquelético , Mioblastos , Células Madre , Porcinos
14.
Stem Cell Res Ther ; 11(1): 341, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762770

RESUMEN

BACKGROUND: The skeletal muscle regeneration relays on the satellite cells which are stem cells located between basal lamina and plasmalemma of muscle fiber. In the injured muscles, the satellite cells become activated, start to proliferate, and then differentiate into myoblasts, which fuse to form myotubes and finally myofibers. The satellite cells play the crucial role in the regeneration; however, other cells present in the muscle could also support this process. In the present study, we focused on one population of such cells, i.e., muscle interstitial progenitor cells. METHODS: We used the CD146 marker to identify the population of mouse muscle interstitial cells. We analyzed the expression of selected markers, as well as clonogenic, myogenic, adipogenic, and chondrogenic potential in vitro. Simultaneously, we analyzed satellite cell-derived myoblasts and bone marrow-derived mesenchymal stem/stromal cells that allowed us to pinpoint the differences between these cell populations. Moreover, we isolated CD146+ cells and performed heterotopic transplantations to follow their in vivo differentiation. RESULTS: Mouse muscle CD146+ interstitial progenitor cells expressed nestin and NG2 but not PAX7. These cells presented clonogenic and myogenic potential both in vitro and in vivo. CD146+ cells fused also with myoblasts in co-cultures in vitro. However, they were not able to differentiate to chondro- or adipocytes in vitro. Moreover, CD146+ cells followed myogenic differentiation in vivo after heterotopic transplantation. CONCLUSION: Mouse CD146+ cells represent the population of mouse muscle interstitial progenitors that differ from satellite cell-derived myoblasts and have clonogenic and myogenic properties.


Asunto(s)
Antígeno CD146 , Desarrollo de Músculos , Mioblastos , Células Satélite del Músculo Esquelético , Animales , Antígeno CD146/genética , Diferenciación Celular , Células Cultivadas , Masculino , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético , Células Madre
15.
Stem Cell Res Ther ; 11(1): 238, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552916

RESUMEN

BACKGROUND: Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo. For this reason, we used teratomas to study early and advanced stages of in vivo ESC myogenic differentiation and the role of Pax7 in this process. Pax7 transcription factor plays a crucial role in the formation and differentiation of skeletal muscle precursor cells during embryonic development. It controls the expression of other myogenic regulators and also acts as an anti-apoptotic factor. It is also involved in the formation and maintenance of satellite cell population. METHODS: In vivo approach we used involved generation and analysis of pluripotent stem cell-derived teratomas. Such model allows to analyze early and also terminal stages of tissue differentiation, for example, terminal stages of myogenesis, including the formation of innervated and vascularized mature myofibers. RESULTS: We determined how the lack of Pax7 function affects the generation of different myofiber types. In Pax7-/- teratomas, the skeletal muscle tissue occupied significantly smaller area, as compared to Pax7+/+ ones. The proportion of myofibers expressing Myh3 and Myh2b did not differ between Pax7+/+ and Pax7-/- teratomas. However, the area of Myh7 and Myh2a myofibers was significantly lower in Pax7-/- ones. Molecular characteristic of skeletal muscles revealed that the levels of mRNAs coding Myh isoforms were significantly lower in Pax7-/- teratomas. The level of mRNAs encoding Pax3 was significantly higher, while the expression of Nfix, Eno3, Mck, Mef2a, and Itga7 was significantly lower in Pax7-/- teratomas, as compared to Pax7+/+ ones. We proved that the number of satellite cells in Pax7-/- teratomas was significantly reduced. Finally, analysis of neuromuscular junction localization in samples prepared with the iDISCO method confirmed that the organization of neuromuscular junctions in Pax7-/- teratomas was impaired. CONCLUSIONS: Pax7-/- ESCs differentiate in vivo to embryonic myoblasts more readily than Pax7+/+ cells. In the absence of functional Pax7, initiation of myogenic differentiation is facilitated, and as a result, the expression of mesoderm embryonic myoblast markers is upregulated. However, in the absence of functional Pax7 neuromuscular junctions, formation is abnormal, what results in lower differentiation potential of Pax7-/- ESCs during advanced stages of myogenesis.


Asunto(s)
Células Satélite del Músculo Esquelético , Teratoma , Animales , Diferenciación Celular , Ratones , Células Madre Embrionarias de Ratones , Desarrollo de Músculos/genética , Músculo Esquelético , Factores de Transcripción NFI , Factor de Transcripción PAX7/genética , Teratoma/genética
16.
Cells ; 9(6)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560483

RESUMEN

Under physiological conditions skeletal muscle regeneration depends on the satellite cells. After injury these cells become activated, proliferate, and differentiate into myofibers reconstructing damaged tissue. Under pathological conditions satellite cells are not sufficient to support regeneration. For this reason, other cells are sought to be used in cell therapies, and different factors are tested as a tool to improve the regenerative potential of such cells. Many studies are conducted using animal cells, omitting the necessity to learn about human cells and compare them to animal ones. Here, we analyze and compare the impact of IL-4 and SDF-1, factors chosen by us on the basis of their ability to support myogenic differentiation and cell migration, at mouse and human adipose tissue-derived stromal cells (ADSCs). Importantly, we documented that mouse and human ADSCs differ in certain reactions to IL-4 and SDF-1. In general, the selected factors impacted transcriptome of ADSCs and improved migration and fusion ability of cells in vitro. In vivo, after transplantation into injured muscles, mouse ADSCs more eagerly participated in new myofiber formation than the human ones. However, regardless of the origin, ADSCs alleviated immune response and supported muscle reconstruction, and cytokine treatment enhanced these effects. Thus, we documented that the presence of ADSCs improves skeletal muscle regeneration and this influence could be increased by cell pretreatment with IL-4 and SDF-1.


Asunto(s)
Quimiocina CXCL12/farmacología , Interleucina-4/farmacología , Mioblastos/citología , Células del Estroma/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Humanos , Ratones , Regeneración/efectos de los fármacos , Trasplante de Células Madre/métodos , Células Madre/citología , Células Madre/efectos de los fármacos
17.
Int J Dev Biol ; 52(2-3): 307-14, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18311722

RESUMEN

Skeletal muscles exhibit great plasticity and an ability to reconstruct in response to injury. However, the repair process is often inefficient and hindered by the development of fibrosis. We explored the possibility that during muscle repair, the different regeneration ability of the fast (extensor digitorum longus; EDL) and slow twitch (Soleus) muscles depends on the differential expression of metalloproteinases (MMP-9 and MMP-2) involved in the remodeling of the extracellular matrix. Our results show that MMP-9 and MMP-2 are present in the intact muscle and are up-regulated after crush-induced muscle injury. The expression and the activity of these two enzymes depend on the type of muscle and the phase of muscle regeneration. In the regenerating Soleus muscle, elevated levels of MMP-9 occurred during the myolysis and reconstruction phase. In contrast, regenerating EDL muscles exhibited decreased MMP-9 levels during myolysis and increased MMP-2 activity at the reconstruction phase. Moreover, satellite cells (mononuclear myoblasts) derived from Soleus and EDL muscles showed no differences in localization or activity of MMP-9 and MMP-2 during proliferation and differentiation in vitro. MMP-9 activity was present during all stages of myoblast differentiation, whereas MMP-2 activity reached its highest level during myoblast fusion. We conclude that MMPs are involved in muscle repair, and that fast and slow twitch muscles exhibit different patterns of MMP-9 and MMP-2 activity.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares de Contracción Lenta/enzimología , Músculo Esquelético/enzimología , Regeneración/fisiología , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Músculo Esquelético/lesiones , Mioblastos/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Int J Dev Biol ; 52(2-3): 219-27, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18311712

RESUMEN

This report presents the history of the involvement of the Department of Cytology in studies of different aspects of regeneration. It can be divided into two major phases; the first focused on the regeneration of Turbellarians and the second on the regeneration of rat skeletal muscles including the differentiation of satellite cells in vitro. Regeneration of Turbellarians was investigated both at the cellular and molecular levels including the role of the protein kinase C (PKC) in this process. Studies on skeletal muscle regeneration initially focused on factors involved in regulation of signal transduction pathways. Next, we explored the influence of growth factors on the modulation of the regeneration process. Another important aspect of our studies was investigating of the distribution and function of different proteins involved in adhesion and fusion of myoblasts. Finally, we are also conducting research on the role of stem cells from other tissues in the regeneration of skeletal muscle.


Asunto(s)
Músculo Esquelético/fisiología , Planarias/fisiología , Regeneración/fisiología , Animales , Mioblastos/fisiología , Células Madre/citología , Células Madre/fisiología
19.
Stem Cell Res Ther ; 10(1): 343, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31753006

RESUMEN

BACKGROUND: Satellite cells, a population of unipotent stem cells attached to muscle fibers, determine the excellent regenerative capability of injured skeletal muscles. Myogenic potential is also exhibited by other cell populations, which exist in the skeletal muscles or come from other niches. Mesenchymal stromal/stem cells inhabiting the bone marrow do not spontaneously differentiate into muscle cells, but there is some evidence that they are capable to follow the myogenic program and/or fuse with myoblasts. METHODS: In the present study we analyzed whether IGF-1, IL-4, IL-6, and SDF-1 could impact human and porcine bone marrow-derived mesenchymal stromal/stem cells (hBM-MSCs and pBM-MSCs) and induce expression of myogenic regulatory factors, skeletal muscle-specific structural, and adhesion proteins. Moreover, we investigated whether these factors could induce both types of BM-MSCs to fuse with myoblasts. IGF-1, IL-4, IL-6, and SDF-1 were selected on the basis of their role in embryonic myogenesis as well as skeletal muscle regeneration. RESULTS: We found that hBM-MSCs and pBM-MSCs cultured in vitro in the presence of IGF-1, IL-4, IL-6, or SDF-1 did not upregulate myogenic regulatory factors. Consequently, we confirmed the lack of their naïve myogenic potential. However, we noticed that IL-4 and IL-6 impacted proliferation and IL-4, IL-6, and SDF-1 improved migration of hBM-MSCs. IL-4 treatment resulted in the significant increase in the level of mRNA encoding CD9, NCAM, VCAM, and m-cadherin, i.e., proteins engaged in cell fusion during myotube formation. Additionally, the CD9 expression level was also driven by IGF-1 treatment. Furthermore, the pre-treatment of hBM-MSCs either with IGF-1, IL-4, or SDF-1 and treatment of pBM-MSCs either with IGF-1 or IL-4 increased the efficacy of hybrid myotube formation between these cells and C2C12 myoblasts. CONCLUSIONS: To conclude, our study revealed that treatment with IGF-1, IL-4, IL-6, or SDF-1 affects BM-MSC interaction with myoblasts; however, it does not directly promote myogenic differentiation of these cells.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Mioblastos/metabolismo , Regeneración , Animales , Células de la Médula Ósea/citología , Fusión Celular , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Porcinos
20.
Exp Hematol ; 34(9): 1262-70, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16939819

RESUMEN

OBJECTIVE: In this report, we demonstrate the participation of human cord blood (HUCB) stem cells in the skeletal muscle regeneration of SCID (severe combined immunodeficient) mice. MATERIALS AND METHODS: The HUCB cells were labeled with the PKH26 fluorescent marker or recognized by an anti-HLA-ABC or anti-beta-2-microglobulin antibody. The HUCB cells were implanted directly into the damaged mouse muscle. The regeneration process and the implanted HUCB cells were traced each day after the damage, throughout a period of 7 days, and additionally at day 30 with the use of flow cytometry and confocal microscopy. RESULTS: The PKH26-labeled cells isolated from the regenerating muscle were positive for the anti-HLA-ABC antibody. The percentage of the PKH26(+) and HLA-ABC(+) cells decreased from day 1 to day 5. In the regenerating muscle, the percentage of the HLA-ABC(+) cells increased, as measured on days 7 and 30. Moreover, myofibers containing fragments of the PKH26-labeled sarcolemma were noticed. Labeling with the anti-human beta(2)-microglobulin antibody showed the presence of positive cells and myofibers at day 7 of the regeneration, suggesting fusion of human and mouse cells. CONCLUSIONS: We suggest that the HUCB cells implanted into the damaged muscle are present there for at least 30 days and that they participate in the muscle regeneration. Moreover, our study shows that the implanted HUCB cells form human muscle precursor cells residing in the repaired mouse muscle. We suggest that the HUCB cell circulation after transplantation depends on SDF-1 (stromal-derived factor-1) expression in regenerating muscle.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Células Madre Hematopoyéticas , Músculo Esquelético/lesiones , Regeneración , Heridas y Lesiones/terapia , Animales , Fusión Celular , Quimiocina CXCL12 , Quimiocinas CXC/biosíntesis , Citometría de Flujo/métodos , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones SCID , Microscopía Confocal/métodos , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Miofibrillas/patología , Factores de Tiempo , Trasplante Heterólogo , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA