RESUMEN
Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (R/S-ClMBA)3GeI5 and (R/S-ClMBA)2GeI4. Through a combined experimental and computational investigation on these samples, we discuss the impact of structural dimensionality on chiroptical properties, chirality transfer, and spin-splitting effects; also, we highlight the impact of structural distortions. The approach presented here paves the way for a solid understanding of the factors affecting the properties of chiral metal halides, thus allowing a future wise materials engineering.
RESUMEN
Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.
RESUMEN
Organic-inorganic metal hybrids with their tailorable lattice dimensionality and intrinsic spin-splitting properties are interesting material platforms for spintronic applications. While the spin decoherence process is extensively studied in lead- and tin-based hybrids, these systems generally show short spin decoherence lifetimes, and their correlation with the lattice framework is still not well-understood. Herein, we synthesized magnetic manganese hybrid single crystals of (4-fluorobenzylamine)2MnCl4, ((R)-3-fluoropyrrolidinium)MnCl3, and (pyrrolidinium)2MnCl4, which represent a change in lattice dimensionality from 2D and 1D to 0D, and studied their spin decoherence processes using continuous-wave electron spin resonance spectroscopy. All manganese hybrids exhibit nanosecond-scale spin decoherence time τ2 dominated by the symmetry-directed spin exchange interaction strengths of Mn2+-Mn2+ pairs, which is much longer than lead- and tin-based metal hybrids. In contrast to the similar temperature variation laws of τ2 in 2D and 0D structures, which first increase and gradually drop afterward, the 1D structure presents a monotonous rise of τ2 with the temperatures, indicating the strong correlation of spin decoherence with the lattice rigidity of the inorganic framework. This is also rationalized on the basis that the spin decoherence is governed by the competitive contributions from motional narrowing (prolonging the τ2) and electron-phonon coupling interaction (shortening the τ2), both of which are thermally activated, with the difference that the former is more pronounced in rigid crystalline lattices.
RESUMEN
We report for the first time the synthesis of [C(NH2)3]Cr(HCOO)3 stabilizing Cr2+ in formate perovskite, which adopts a polar structure and orders magnetically below 8 K. We discuss in detail the magnetic properties and their coupling to the crystal structure based on first-principles calculations, symmetry, and model Hamiltonian analysis. We establish a general model for the orbital magnetic moment of [C(NH2)3]M(HCOO)3 (M = Cr, Cu) based on perturbation theory, revealing the key role of the Jahn-Teller distortions. We also analyze their spin and orbital textures in k-space, which show unique characteristics.
RESUMEN
Hybrid organic-inorganic perovskite (HOIP) ferroelectrics are attracting considerable interest because of their high performance, ease of synthesis, and lightweight. However, the intrinsic thermodynamic origins of their ferroelectric transitions remain insufficiently understood. Here, we identify the nature of the ferroelectric phase transitions in displacive [(CH3)2NH2][Mn(N3)3] and order-disorder type [(CH3)2NH2][Mn(HCOO)3] via spatially resolved structural analysis and ab initio lattice dynamics calculations. Our results demonstrate that the vibrational entropy change of the extended perovskite lattice drives the ferroelectric transition in the former and also contributes importantly to that of the latter along with the rotational entropy change of the A-site. This finding not only reveals the delicate atomic dynamics in ferroelectric HOIPs but also highlights that both the local and extended fluctuation of the hybrid perovskite lattice can be manipulated for creating ferroelectricity by taking advantages of their abundant atomic, electronic, and phononic degrees of freedom.
RESUMEN
Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis, and sensing applications", which took place within the 2018 European Materials Research Society fall meeting.
RESUMEN
Density functional theory calculations have been performed for the structural, electronic, magnetic, and ferroelectric properties of a mixed-valence Fe(ii)-Fe(iii) formate framework [NH2(CH3)2][FeiiiFeii(HCOO)6]. Recent experiments report a spontaneous electric polarization, and our calculations are in agreement with the reported experimental value. Furthermore, we shed light onto the microscopic mechanism leading to the observed value, as well as on how to possibly enhance the polarization. The interplay between charge ordering, dipolar ordering of DMA+ cations, and the induced structural distortions suggest new interesting directions to explore in these complex multifunctional hybrid perovskites.
RESUMEN
Hybrid organic-inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can have coexisting magnetism and ferroelectricity whose possible coupling gives rise to magnetoelectricity. Here using first-principles computations, we show that, in a perovskite metal-organic framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an Electric tuning of the Magneto-Optical Kerr effect (EMOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay between the Kerr angle and the organic-inorganic components of MOFs offers surprising unprecedented tools for engineering MOKE in complex compounds. Note that this work may be relevant to acentric magnetic systems in general, e.g., multiferroics.
RESUMEN
The nontrivial aspects of electron structure in lanthanide complexes, considering ligand field (LF) and exchange coupling effects, have been investigated by means of density functional theory (DFT) calculations, taking as a prototypic case study a series of binuclear complexes [LCu(O2COMe)Ln(thd)2], where L2- = N,N'-2,2-dimethyl-propylene-di(3-methoxy-salicylidene-iminato) and Ln = Tb, Lu, and Gd. Particular attention has been devoted to the Cu-Tb complex, which shows a quasi-degenerate nonrelativistic ground state. Challenging the limits of density functional theory (DFT), we devised a practical route to obtain different convergent solutions, permuting the starting guess orbitals in a manner resembling the run of the ß electron formally originating from the f8 configuration of the Tb(III) over seven molecular orbitals (MOs) with predominant f-type character. Although the obtained states cannot be claimed as the DFT computed split of the 7F multiplet, the results are yet interesting numeric experiments, relevant for the ligand field effects. We also performed broken symmetry (BS) DFT estimation of exchange coupling in the Cu-Gd system, using different settings, with Gaussian-type and plane-wave bases, finding a good match with the coupling parameter from experimental data. We also caught BS-type states for each of the mentioned series of different states emulated for the Cu-Tb complex, finding almost equal exchange coupling parameters throughout the seven LF-like configurations, the magnitude of the J parameter being comparable with those of the Cu-Gd system.
RESUMEN
A study of the magnetic structure of the [NH2(CH3)2]n[FeIIIMII(HCOO)6]n niccolite-like compounds, with MII = CoII (2) and MnII (3) ions, has been carried out using neutron diffraction and compared with the previously reported FeII-containing compound (1). The inclusion of two different metallic atoms into the niccolite-like structure framework leads to the formation of isostructural compounds with very different magnetic behaviors due to the compensation or not of the different spins involved in each lattice. Below TN, the magnetic order in these compounds varies from ferrimagnetic behavior for 1 and 2 to an antiferromagnetic behavior with a weak spin canting for 3. Structure refinements of 2 and 3 at low temperature (45 K) have been carried out combining synchrotron X-ray and high-resolution neutron diffraction in a multipattern approach. The magnetic structures have been determined from the difference patterns between the neutron data in the paramagnetic and the magnetically ordered regions. These difference patterns have been analyzed using a simulated annealing protocol and symmetry analysis techniques. The obtained magnetic structures have been further rationalized by means of ab initio DFT calculations. The direction of the magnetic moment of each compound has been determined. The easy axis of the MII for compound 1 (FeII) is along the c axis; for compound 2 (CoII), the moments are mainly within the ab plane; finally, for compound 3 (MnII), the calculations show that the moments have components both in the ab plane and along the c axis.
RESUMEN
High-quality single crystals of perovskite-like (CH3NH3)3Bi2I9 hybrids have been synthesized, using a layered-solution crystal-growth technique. The large dielectric constant is strongly affected by the polar ordering of its constituents. Progressive dipolar ordering of the methylammonium cation upon cooling below 300 K gradually converts the hexagonal structure (space group P63/mmc) into a monoclinic phase (C2/c) at 160 K. A well-pronounced, ferrielectric phase transition at 143 K is governed by in-plane ordering of the bismuth lone pair that breaks inversion symmetry and results in a polar phase (space group P21). The dielectric constant is markedly higher in the C2/c phase above this transition. Here, the bismuth lone pair is disordered in-plane, allowing the polarizability to be substantially enhanced. Density functional theory calculations estimate a large ferroelectric polarization of 7.94 µC/cm2 along the polar axis in the P21 phase. The calculated polarization has almost equal contributions of the methylammonium and Bi3+ lone pair, which are fairly decoupled.
RESUMEN
The effect of the SCN- ion on the structural, electronic, optical, and mechanical properties of the layered (MA)2Pb(SCN)2I2 (MA=CH3NH3+) perovskite is investigated by using first-principles calculations. Our results suggest that the introduction of SCN- ions at the apical positions gives rise to shorter Pb-S bond lengths, more distorted octahedra, and more hydrogen bonds, which have important effects on the electronic, optical, mechanical, and piezoelectric properties in (MA)2Pb(SCN)2I2. Furthermore, a strong relativistic Rashba splitting is induced due to the breaking of the inversion symmetry, which helps to suppress the carrier recombination and enhance the carrier lifetime. The analysis of mechanical properties reveals that the incorporation of SCN- ions is beneficial to strengthen Young's modulus of the perovskite materials and it enhances the piezoelectric properties. Our investigation suggests that doping SCN- ions into the perovskite materials could be a promising strategy to improve the stability and mechanical properties of organic-inorganic hybrid halide perovskite compounds.
RESUMEN
By means of density functional theory based calculations, we study the role of spin-orbit coupling in the new family of ABC hyperferroelectrics [Garrity, Rabe, and Vanderbilt Phys. Rev. Lett. 112, 127601 (2014)]. We unveil an extremely rich physics strongly linked to ferroelectric properties, ranging from the electric control of bulk Rashba effect to the existence of a three-dimensional topological insulator phase, with concomitant topological surface states even in the ultrathin film limit. Moreover, we predict that the topological transition, as induced by alloying, is followed by a Weyl semimetal phase of finite concentration extension, which is robust against disorder, putting forward hyperferroelectrics as promising candidates for spin-orbitronic applications.
RESUMEN
The perovskite azido compound [(CH3 )4 N][Mn(N3 )3 ], which undergoes a first-order phase change at Tt =310â K with an associated magnetic bistability, was revisited in the search for additional ferroic orders. The driving force for such structural transition is multifold and involves a peculiar cooperative rotation of the [MnN6 ] octahedral as well as order/disorder and off-center shifts of the [(CH3 )4 N](+) cations and bridging azide ligands, which also bend and change their coordination mode. According to DFT calculations the latter two give rise to the appearance of electric dipoles in the low-temperature (LT) polymorph, the polarization of which nevertheless cancels out due to their antiparallel alignment in the crystal. The conversion of this antiferroelectric phase to the paraelectric phase could be responsible for the experimental dielectric anomaly detected at 310â K. Additionally, the structural change involves a ferroelastic phase transition, whereby the LT polymorph exhibits an unusual and anisotropic thermal behavior. Hence, [(CH3 )4 N][Mn(N3 )3 ] is a singular material in which three ferroic orders coexist even above room temperature.
RESUMEN
A displacive-type mechanism, which accounts for the occurrence of ferroelectricity in most inorganic ferroelectrics, is rarely found in molecule-based ferroelectrics. Its role is often covered by the predominant order-disorder one. Herein, we report a lone-pair-electron-driven displacive-type ferroelectric organic-inorganic hybrid compound, [H2dmdap][SbCl5] (1; dmdap = N,N-dimethyl-1,3-diaminopropane). The structure of 1 features a typical zigzag chain of [SbCl5]∞ containing cis-connected anionic octahedra. The compound undergoes a second-order paraelectric-ferroelectric phase transition at 143 K (P21/c â Pc) with a saturation polarization of 1.36 µC·cm-2 and a coercive field of 3.5 kV·cm-1 at 119 K. Theoretical study discloses the ferroelectricity mainly originating from the relative displacements of the Sb and Cl ions in the crystal lattice, which are driven by the 5s2 lone-pair electrons of the SbIII center. Furthermore, on the basis of analysis, possible routes are suggested to enhance ferroelectric polarization in this class of compounds.
RESUMEN
When the weak forces producing parity-violating effects are taken into account, there is a tiny energy difference between the total electronic energies of two enantiomers (ΔEPV), which might be the key to understanding the evolution of the biological homochirality. We focus on the electronic chirality measure (ECM), a powerful descriptor based on the electronic charge density, for quantifying the chirality degree of a molecule, in a representative set of chiral molecules, together with their EPV energies. Our results show a novel, strong, and positive correlation between ΔEPV and ECM, supporting a subtle interplay between the weak forces acting within the nuclei of a given molecule and its chirality. These findings suggest that experimental investigations for molecular parity violation detection should consider molecules with ECM values as large as possible and may support that a chiral signature is imprinted on life by fundamental physics via the parity-violating weak interactions.
RESUMEN
Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-ß-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, ξ = p â r ( p represents the ferroelectric displacement vector and r denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor's sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.
RESUMEN
We perform density functional theory calculations on a recently synthesized metal-organic framework (MOF) with a perovskite-like topology ABX3, i.e., [CH3CH2NH3]Mn(HCOO)3, and predict a multiferroic behavior, i.e., a coexistence of ferroelectricity and ferromagnetism. A peculiar canted ordering of the organic A-cation dipole moments gives rise to a ferroelectric polarization of ~2 µC/cm(2). Starting from these findings, we show that by choosing different organic A cations, it is possible to tune the ferroelectric polarization and increase it up to 6 µC/cm(2). The possibility of changing the magnitude and/or the canting of the organic molecular dipole opens new routes toward engineering ferroelectric polarization in the new class of multiferroic metal-organic frameworks.
RESUMEN
A new orthorhombic phase, MnCrO4, isostructural with MCrO4 (M = Mg, Co, Ni, Cu, Cd) was prepared by evaporation of an aqueous solution, (NH4)2Cr2O7 + 2 Mn(NO3)2, followed by calcination at 400 °C. It is characterized by redox titration, Rietveld analysis of the X-ray diffraction pattern, Cr K edge and Mn K edge XANES, ESR, magnetic susceptibility, specific heat and resistivity measurements. In contrast to the high-pressure MnCrO4 phase where both cations are octahedral, the new phase contains Cr in a tetrahedral environment suggesting the charge balance Mn(2+)Cr(6+)O4. However, the positions of both X-ray absorption K edges, the bond lengths and the ESR data suggest the occurrence of some mixed-valence character in which the mean oxidation state of Mn is higher than 2 and that of Cr is lower than 6. Both the magnetic susceptibility and the specific heat data indicate an onset of a three-dimensional antiferromagnetic order at TN ≈ 42 K, which was confirmed also by calculating the spin exchange interactions on the basis of first principles density functional calculations. Dynamic magnetic studies (ESR) corroborate this scenario and indicate appreciable short-range correlations at temperatures far above TN. MnCrO4 is a semiconductor with activation energy of 0.27 eV; it loses oxygen on heating above 400 °C to form first Cr2O3 plus Mn3O4 and then Mn1.5Cr1.5O4 spinel.
RESUMEN
We studied the magneto-optical Kerr effect (MOKE) of two-dimensional (2D) heterostructure CrI3/In2Se3/CrI3 using density functional theory calculations and symmetry analysis. The spontaneous polarization in the In2Se3 ferroelectric layer and the antiferromagnetic ordering in CrI3 layers break the mirror and the time-reversal symmetry, thus activating MOKE. We show that the Kerr angle can be reversed by either the polarization or the antiferromagnetic order parameter. Our results suggest that ferroelectric and antiferromagnetic 2D heterostructures could be exploited for ultracompact information storage devices, where the information is encoded by the two ferroelectric or the two time-reversed antiferromagnetic states and the read-out is performed optically by MOKE.