Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JACC CardioOncol ; 2(5): 758-770, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34396292

RESUMEN

BACKGROUND: There is evidence that metabolic disease burden in lymphoma influences patient outcome. However, the impact of disease severity on the cardiovascular system is unknown. OBJECTIVES: The aim of this study was to examine whether lymphoma is associated with arterial inflammation by investigating the relationship between disease metabolic burden and arterial fluorodeoxyglucose (FDG) uptake. METHODS: Sixty-two chemotherapy-naïve patients with active Hodgkin's or non-Hodgkin's lymphoma were matched (2:1) to individual control groups of lymphoma patients previously treated and free of active disease. All groups underwent 18F-FDG position emission tomography-computed tomography imaging. Disease severity was quantified by metabolic tumor volume (MTV) and total lesion glycolysis corresponding to standardized uptake values (SUVs) ≥41% or ≥2.5 of the maximum SUV within lymphoma regions, and aortic FDG uptake was quantified through the target-to-background ratio (TBR). Inflammatory and disease severity biomarkers were also measured. RESULTS: MTV and total lesion glycolysis measurements were significantly correlated with inflammatory and disease biomarkers. Aortic TBR was higher in patients with active non-Hodgkin's lymphoma compared with control subjects (median difference 0.51; 95% confidence interval [CI]: 0.28 to 0.78; p < 0.001). Similarly, patients with active Hodgkin's lymphoma had higher values of aortic TBR compared with control subjects (median difference 0.31; 95% CI: 0.15 to 0.49; p < 0.001). In addition, aortic TBR was modestly increased in patients with stage III to IV disease compared with those with stage I to II disease (median aortic TBR: 2.23 [interquartile range: 2.01 to 2.54] vs. 2.06 [interquartile range: 1.83 to 2.27; p = 0.050). In multivariable analysis, aortic FDG uptake and MTV≥2.5 values were independently associated (ß = 0.425; 95% CI: 0.189 to 0.662; p = 0.001; R2 = 0.208), as were aortic FDG uptake and MTV≥41% (ß = 0.407; 95% CI: 0.167 to 0.649, p = 0.001; R2 = 0.191). CONCLUSIONS: Aortic wall FDG uptake is related with disease severity indicative of a possible vascular effect of lymphoma. This work highlights a new potential role of molecular imaging in cardio-oncology for evaluating disease severity and its consequences on the vasculature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA