Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 27(10): 14270-14282, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163878

RESUMEN

In this work, optical properties of a cubic blue phase liquid crystal (BPLC) in photonic microstructures were investigated. The experiments were carried out in microcapillaries with different inner diameters and in a photonic crystal fiber (PCF). For the first time, white-light beam propagation through a BPLC (BP II) in a microcapillary with a 60-µm inner diameter at a distance of 26 mm was demonstrated. Furthermore, it was conclusively shown that the cylindrical geometry and the size of its inner diameter influence BP domains orientation, which can lead to a uniform texture of the BPLC with a dominant Bragg wavelength. This study also proves that a BPLC-filled PCF provides very attractive tunable properties. It was presented that by applying an external electric field, a control of the transmitted light intensity for particular wavelengths can be achieved, depending on the input polarization. Moreover, a range of the wavelengths corresponding to low transmission appeared to be tunable, whereas for x- and y-polarized light, respectively, both narrowing (from 16 nm to 9 nm) as well widening (from 13 nm to 22 nm) of the bandgaps were observed. Finally, the obtained experimental results were found qualitatively consistent.

2.
ACS Nano ; 16(12): 20577-20588, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36475617

RESUMEN

Blue phase liquid crystals (BPLCs) are chiral mesophases with 3D order, which makes them a promising template for doping nanoparticles (NPs), yielding tunable nanomaterials attractive for microlasers and numerous microsensor applications. However, doping NPs to BPLCs causes BP lattice extension, which translates to elongation of operating wavelengths of light reflection. Here, it is demonstrated that small (2.4 nm diameter) achiral gold (Au) NPs decorated with designed LC-like ligands can enhance the chiral twist of BPLCs (i.e., reduce cell size of the single BP unit up to ∼14% and ∼7% for BPI and BPII, respectively), translating to a blue-shift of Bragg reflection. Doping NPs also significantly increases the thermal stability of BPs from 5.5 °C (for undoped BPLC) up to 22.8 °C (for doped BPLC). In line with our expectations, both effects are saturated, and their magnitude depends on the concentration of investigated nanodopants as well the BP phase type. Our research highlights the critical role of functionalization of Au NPs on the phase sequence of BPLCs. We show that inappropriate selection of surface ligands can destabilize BPs. Our BPLC and Au NPs are photochemically stable and exhibit great miscibility, preventing NP aggregation in the BPLC matrix over the long term. We believe that our findings will improve the fabrication of advanced nanomaterials into 3D periodic soft photonic structures.

3.
Materials (Basel) ; 14(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34443176

RESUMEN

The synthesis and characterization of new deuterated liquid crystal (LC) compounds based on phenyl tolane core is described in this paper. The work presents an alternative molecular approach to the conventional LC design. Correlations between molecular structure and mesomorphic and optical properties for compounds which are alkyl-hydrogen terminated and alkyl-deuterium, have been drawn. The compounds are characterized by mass spectrometry (electron ionization) analysis and infrared spectroscopy. They show enantiotropic nematic behavior in a broad temperature range, confirmed by a polarizing thermomicroscopy and differential scanning calorimetry. Detailed synthetic procedures are attached. Synthesized compounds show a significantly reduced absorption in the near-infrared (NIR) and medium-wavelength infrared (MWIR) radiation range, and stand as promising components of medium to highly birefringent liquid crystalline mixtures.

4.
Sci Rep ; 10(1): 10148, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576875

RESUMEN

Three-dimensional (3D) photonic crystals like Blue Phases, self-assemble in highly organized structures with a sub-micrometer range periodicity, producing selective Bragg reflections in narrow bands. Current fabrication techniques are emerging at a fast pace, however, manufacturing large 3D monocrystals still remains a challenge, and controlling the crystal orientation of large crystals has not yet been achieved. In this work, we prepared ideal 3D Blue Phase macrocrystals with a controlled crystal orientation. We designed a method to obtain large monocrystals at a desired orientation and lattice size (or reflection wavelength) by adjusting the precursor materials formulation and a simple surface treatment. Moreover, using the same method, it is possible to predict unknown lattice orientations of Blue Phases without resorting to Kossel analysis. Producing large 3D photonic crystals that are also functional tunable structures is likely to have a direct impact on new photonic applications, like microcavity lasers, displays, 3D lasers, or biosensors.

5.
RSC Adv ; 8(40): 22835-22845, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35539708

RESUMEN

The practical application of liquid crystals (LCs) as anisotropic and ubiquitous solvents is undoubtedly lucrative. Therefore, defining solvent polarity parameters as demonstrating the effects of anisotropic LC media on the photo-physical behavior of solute molecules is increasingly sought to determine their suitability for specific areas. For this fundamental reason, a spectroscopic method was used via Kamlet-Abboud-Taft (KAT) polarity functions to determine the solvatochromic polarity (SP) parameters for different LCs regarding high and low dielectric anisotropy (Δε) at different temperatures and LC phases, both isotropic and anisotropic. According to empirical solvent polarity parameters, our LCs were categorized as a dipolar hydrogen bonding donor solvent. Moreover, typical and overall matrix anisotropy polarity parameters as variations of the SP parameter values between the isotropic and anisotropic phases were sorted according to Δε magnitude. Finally, we introduced the linear solvation energy relationships of empirical solvent scales with the KAT parameters sets for the first time in nematic LCs with the well-established correlations.

6.
Phys Rev E ; 97(5-1): 052704, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906921

RESUMEN

Nematogenic liquids are materials that are in high demand for many application purposes. Field-induced nematic order in isotropic liquids can be observed by the enhancement of electric permittivity during dielectric spectroscopy measurements under the bias electric field. For this reason, dielectric measurements were done on a nematogenic mixture of highly polar compounds. This paper presents a discussion on the influence of the bias electric field on the dielectric response. We observed a decrease of electric permittivity in the isotropic phase under the bias electric field. This effect is most likely caused by the field-induced creation of some complex molecular objects. In the paper, relaxation parameters of the molecular modes were analyzed. The field-induced orientational order was determined using a dichroic ratio in a guest-host system. The measurements show the significant order parameter in the isotropic phase under an electric field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA