Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Fish Biol ; 105(2): 564-576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886181

RESUMEN

European sea bass (Dicentrarchus labrax) is a species of high commercial and recreational value, but it exhibits highly variable recruitment rates and has been subject to recent declines. Emergency management measures put in place to protect spawning stocks include the annual closure of commercial and recreational fisheries over a 2-month, February-March, window. Whether this protection measure is having the desired outcome for this data-poor species remains unclear. Otolith microstructural analyses (counts and widths of daily growth rings and check marks indicative of settlement) were used to estimate (1) spawn timing, (2) pelagic larval duration and settlement timing, (3) growth rate and condition, and (4) the otolith-fish size relationship for juvenile European sea bass caught from two estuaries in Wales (Dwyryd, Y Foryd), located at the northern edge of the species range. We observed a significant mismatch between the timing of fisheries closures and the spawning, with 99.2% of recruits having been spawned after the fishery had reopened (back-calculated median spawn date = May 5 ± 17 days SD), suggesting that the closure may be too early to adequately protect this population. Further, we present the first empirically derived estimates of pelagic larval duration for sea bass recruits settling in UK habitats, which showed a strong negative relationship with spawn date. Finally, we found significant differences in fish condition between the two estuaries, suggesting local variation in habitat quality. The results suggest that the timing of current fisheries closures may not be adequately protecting the spawners supplying these northernmost estuaries, which are likely to become increasingly important as sea bass distributions shift northward in our climate future.


Asunto(s)
Lubina , Estuarios , Explotaciones Pesqueras , Animales , Lubina/fisiología , Lubina/crecimiento & desarrollo , Reproducción , Conservación de los Recursos Naturales , Gales , Membrana Otolítica , Tamaño Corporal , Dinámica Poblacional
2.
J Fish Biol ; 105(2): 412-430, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982714

RESUMEN

Intraspecific biodiversity is vital for species persistence in an increasingly volatile world. By embracing methods that integrate information at different spatiotemporal scales, we can directly monitor and reconstruct changes in intraspecific biodiversity. Here we combined genetics and otolith biochronologies to describe the genotypic and phenotypic diversity of Chinook salmon (Oncorhynchus tshawytscha) in the Yuba River, California, comparing cohorts that experienced a range of hydroclimatic conditions. Yuba River salmon have been heavily impacted by habitat loss and degradation, and large influxes of unmarked hatchery fish each year have led to concern about introgression and uncertainty around the viability of its wild populations, particularly the rarer spring-run salmon. Otolith strontium isotopes showed that Yuba River origin fish represented, on average, 42% (range 7%-73%) of spawners across six return years (2009-2011, 2018-2020), with large interannual variability. The remainder of adult Chinook salmon in the river were primarily strays from the nearby Feather River hatchery, and since 2018 from the Mokelumne River hatchery. Among the Yuba-origin spawners, on average, 30% (range 14%-50%) exhibited the spring-run genotype. The Yuba-origin fish also displayed a variety of outmigration phenotypes that differed in the timing and size at which they left the Yuba river. Early-migrating fry dominated the returns (mean 59%, range 33%-89%), and their contribution rates were negatively correlated with freshwater flows. It is unlikely that fry survival rates are elevated during droughts, suggesting that this trend reflects disproportionately low survival of larger later migrating parr, smolts, and yearlings along the migratory corridor in drier years. Otolith daily increments indicated generally faster growth rates in non-natal habitats, emphasizing the importance of continuing upstream restoration efforts to improve in-river growing conditions. Together, these findings show that, despite a long history of habitat degradation and hatchery introgression, the Yuba River maintains intraspecific biodiversity that should be taken into account in future management, restoration, and reintroduction plans. The finding that genotypic spring-run are reproducing, surviving, and returning to the Yuba River every year suggests that re-establishment of an independent population is possible, although hatchery-wild interactions would need to be carefully considered. Integrating methods is critical to monitor changes in key genetic, physiological, and behavioral traits to assess population viability and resilience.


Asunto(s)
Biodiversidad , Membrana Otolítica , Ríos , Salmón , Animales , Membrana Otolítica/química , Salmón/genética , California , Genotipo , Fenotipo , Ecosistema , Variación Genética
3.
Bioscience ; 72(4): 372-386, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35370478

RESUMEN

Ecosystem management and governance of cross-scale dependent systems require integrating knowledge about ecological connectivity in its multiple forms and scales. Although scientists, managers, and policymakers are increasingly recognizing the importance of connectivity, governmental organizations may not be currently equipped to manage ecosystems with strong cross-boundary dependencies. Managing the different aspects of connectivity requires building social connectivity to increase the flow of information, as well as the capacity to coordinate planning, funding, and actions among both formal and informal governance bodies. We use estuaries in particular the San Francisco Estuary, in California, in the United States, as examples of cross-scale dependent systems affected by many intertwined aspects of connectivity. We describe the different types of estuarine connectivity observed in both natural and human-affected states and discuss the human dimensions of restoring beneficial physical and ecological processes. Finally, we provide recommendations for policy, practice, and research on how to restore functional connectivity to estuaries.

4.
Glob Chang Biol ; 26(3): 1235-1247, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31789453

RESUMEN

Altered river flows and fragmented habitats often simplify riverine communities and favor non-native fishes, but their influence on life-history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time- and size-selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.


Asunto(s)
Ecosistema , Salmón , Migración Animal , Animales , California , Cambio Climático , Ríos
6.
Evol Appl ; 17(7): e13741, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957311

RESUMEN

Chinook salmon (Oncorhynchus tshawytscha) display remarkable life history diversity, underpinning their ability to adapt to environmental change. Maintaining life history diversity is vital to the resilience and stability of Chinook salmon metapopulations, particularly under changing climates. However, the conditions that promote life history diversity are rapidly disappearing, as anthropogenic forces promote homogenization of habitats and genetic lineages. In this study, we use the highly modified Yuba River in California to understand if distinct genetic lineages and life histories still exist, despite reductions in spawning habitat and hatchery practices that have promoted introgression. There is currently a concerted effort to protect federally listed Central Valley spring-run Chinook salmon populations, given that few wild populations still exist. Despite this, we lack a comprehensive understanding of the genetic and life history diversity of Chinook salmon present in the Yuba River. To understand this diversity, we collected migration timing data and GREB1L genotypes from hook-and-line, acoustic tagging, and carcass surveys of Chinook salmon in the Yuba River between 2009 and 2011. Variation in the GREB1L region of the genome is tightly linked with run timing in Chinook salmon throughout their range, but the relationship between this variation and entry on spawning grounds is little explored in California's Central Valley. We found that the date Chinook salmon crossed the lowest barrier to Yuba River spawning habitat (Daguerre Point Dam) was tightly correlated with their GREB1L genotype. Importantly, our study confirms that ESA-listed spring-run Chinook salmon are spawning in the Yuba River, promoting a portfolio of life history and genetic diversity, despite the highly compressed habitat. This work highlights the need to identify and protect this life history diversity, especially in heavily impacted systems, to maintain healthy Chinook salmon metapopulations. Without protection, we run the risk of losing the last vestiges of important genetic variation.

7.
Nat Commun ; 15(1): 5462, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937466

RESUMEN

Dams and reservoirs are often needed to provide environmental water and maintain suitable water temperatures for downstream ecosystems. Here, we evaluate if water allocated to the environment, with storage to manage it, might allow environmental water to more reliably meet ecosystem objectives than a proportion of natural flow. We use a priority-based water balance operations model and a reservoir temperature model to evaluate 1) pass-through of a portion of reservoir inflow versus 2) allocating a portion of storage capacity and inflow for downstream flow and stream temperature objectives. We compare trade-offs to other senior and junior priority water demands. In many months, pass-through flows exceed the volumes needed to meet environmental demands. Storage provides the ability to manage release timing to use water efficiently for environmental benefit, with a co-benefit of increasing reservoir storage to protect cold-water at depth in the reservoir.

8.
Rev Fish Biol Fish ; : 1-22, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37360578

RESUMEN

Developed countries are increasingly dependent on international trade to meet seafood requirements, which has important social, environmental, and economic implications. After becoming an independent coastal state following Brexit, the UK faces increased trade barriers and changes in seafood availability and cost. We compiled a long-term (120-year) dataset of UK seafood production (landings and aquaculture), imports, and exports, and assessed the influence of policy change and consumer preference on domestic production and consumption. In the early twentieth century, distant-water fisheries met an increasing demand for large, flaky fish such as cod and haddock that are more abundant in northerly waters. Accordingly, from 1900 to 1975, the UK fleet supplied almost 90% of these fish. However, policy changes in the mid-1970s such as the widespread establishment of Exclusive Economic Zones and the UK joining the European Union resulted in large declines in distant-water fisheries and a growing mismatch between seafood production versus consumption in the UK. While in 1975, UK landings and aquaculture accounted for 89% of seafood consumed by the British public, by 2019 this was only 40%. The combination of policy changes and staunch consumer preferences for non-local species has resulted in today's situation, where the vast majority of seafood consumed in the UK is imported, and most seafood produced domestically is exported. There are also health considerations. The UK public currently consumes 31% less seafood than is recommended by government guidelines, and even if local species were more popular, total domestic production would still be 73% below recommended levels. In the face of climate change, global overfishing and potentially restrictive trade barriers, promoting locally sourced seafood and non-seafood alternatives would be prudent to help meet national food security demands, and health and environmental targets.. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-023-09776-5.

9.
PLoS One ; 10(5): e0122380, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25992556

RESUMEN

The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith (87)Sr/(86)Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.


Asunto(s)
Migración Animal , Conducta Animal , Salmón/crecimiento & desarrollo , Salmón/fisiología , Animales , California , Cambio Climático , Hidrología , Fenotipo , Ríos
10.
PLoS One ; 9(10): e108539, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279667

RESUMEN

Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values did not fully match [ corrected]. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified.


Asunto(s)
Ambiente , Peces/fisiología , Membrana Otolítica/fisiología , Animales , Mar del Norte
11.
J Trace Elem Med Biol ; 27(4): 273-85, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23643248

RESUMEN

A comprehensive review of the analytical literature revealed substantial under-representation of trace element concentrations in fish blood, particularly for marine species. We describe a simple dilution procedure to measure Li, Mg, K, Ca, Mn, Cu, Zn, Se, Rb, Sr, Ba and Pb concentrations in low volumes of blood plasma of adult plaice (Pleuronectes platessa) using high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). Captive male and female plaice (n = 18) were serially sampled for one year and samples collected outside of the spawning season (n = 157) used to estimate reference ranges for this species. Method accuracy was deemed satisfactory, based on its application to the analysis of a certified reference material. Precision was generally <3%, with the most conservative measure of precision being ≤10% for all elements except Pb (∼20%). This is the first study to analyse fish blood plasma by ICP-MS and includes some of the first reference ranges for trace element concentrations in fish blood.


Asunto(s)
Lenguado/sangre , Metales Alcalinos/sangre , Metales Alcalinotérreos/sangre , Oligoelementos/sangre , Animales , Femenino , Masculino , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA