Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Sci ; 30(1): 12, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803804

RESUMEN

BACKGROUND: Zika virus (ZIKV) infection is clinically known to induce testicular swelling, termed orchitis, and potentially impact male sterility, but the underlying mechanisms remain unclear. Previous reports suggested that C-type lectins play important roles in mediating virus-induced inflammatory reactions and pathogenesis. We thus investigated whether C-type lectins modulate ZIKV-induced testicular damage. METHODS: C-type lectin domain family 5 member A (CLEC5A) knockout mice were generated in a STAT1-deficient immunocompromised background (denoted clec5a-/-stat1-/-) to enable testing of the role played by CLEC5A after ZIKV infection in a mosquito-to-mouse disease model. Following ZIKV infection, mice were subjected to an array of analyses to evaluate testicular damage, including ZIKV infectivity and neutrophil infiltration estimation via quantitative RT-PCR or histology and immunohistochemistry, inflammatory cytokine and testosterone detection, and spermatozoon counting. Furthermore, DNAX-activating proteins for 12 kDa (DAP12) knockout mice (dap12-/-stat1-/-) were generated and used to evaluate ZIKV infectivity, inflammation, and spermatozoa function in order to investigate the potential mechanisms engaged by CLEC5A. RESULTS: Compared to experiments conducted in ZIKV-infected stat1-/- mice, infected clec5a-/-stat1-/- mice showed reductions in testicular ZIKV titer, local inflammation and apoptosis in testis and epididymis, neutrophil invasion, and sperm count and motility. CLEC5A, a myeloid pattern recognition receptor, therefore appears involved in the pathogenesis of ZIKV-induced orchitis and oligospermia. Furthermore, DAP12 expression was found to be decreased in the testis and epididymis tissues of clec5a-/-stat1-/- mice. As for CLEC5A deficient mice, ZIKV-infected DAP12-deficient mice also showed reductions in testicular ZIKV titer and local inflammation, as well as improved spermatozoa function, as compared to controls. CLEC5A-associated DAP12 signaling appears to in part regulate ZIKV-induced testicular damage. CONCLUSIONS: Our analyses reveal a critical role for CLEC5A in ZIKV-induced proinflammatory responses, as CLEC5A enables leukocytes to infiltrate past the blood-testis barrier and induce testicular and epididymal tissue damage. CLEC5A is thus a potential therapeutic target for the prevention of injuries to male reproductive organs in ZIKV patients.


Asunto(s)
Orquitis , Infección por el Virus Zika , Virus Zika , Humanos , Masculino , Ratones , Animales , Semen/metabolismo , Ratones Noqueados , Inflamación/genética , Lectinas Tipo C/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298224

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Rayos Infrarrojos
3.
BMC Infect Dis ; 20(1): 347, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414340

RESUMEN

BACKGROUND: Dengue is endemic in over 100 countries and is an important public health problem worldwide. Dengue fever is not endemic in Taiwan; the importation of dengue viruses from neighboring countries via close commercial links and air travel is considered to be the cause of local outbreaks. Therefore, efforts toward disease control have focused on preventing the importation of dengue into Taiwan. In this study, we investigated the relationships between the numbers of imported and indigenous dengue cases to test the validity of this strategy. METHODS: Data on cases of dengue fever that occurred between 2013 and 2018 were obtained from the surveillance systems of the Taiwan Center for Disease Control and Kaohsiung City Health Department. Standard epidemiological data, including the monthly numbers of indigenous and imported cases of dengue, were calculated. Potential associations between the numbers of indigenous and imported cases were investigated using correlation analyses. RESULTS: We identified a possible relationship between the period of disease concealment and the number of imported dengue cases, which resulted in epidemics of indigenous dengue fever within local communities. Further analysis of confirmed cases during previous epidemics in Kaohsiung City found that the risk of indigenous dengue fever may be related to the likelihood that patients with imported dengue fever will stay within local communities. CONCLUSION: Given the correlations found between imported and indigenous cases of dengue fever, as well as the relationship between the disease concealment period and the risk of indigenous dengue fever, prevention of disease importation and efficient identification of dengue cases within high-risk communities remain the major priorities for disease control.


Asunto(s)
Dengue/epidemiología , Brotes de Enfermedades/prevención & control , Viaje en Avión , Dengue/prevención & control , Femenino , Humanos , Masculino , Salud Pública , Cuarentena , Taiwán/epidemiología
4.
Database (Oxford) ; 20242024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197059

RESUMEN

Acoustic communication plays an important role during the courtship of many mosquito species. Male mosquitoes show strong attraction to female wing beat frequencies, mediated via spectral matching between female wing beat frequency and male ear mechanical tuning frequency. Such acoustic communication typically occurs within swarms, male-dominated aggregations with species-specific properties. Despite hundreds of relevant publications being available, the lack of a central platform hosting all associated data hinders research efforts and limits cross-species comparisons. Here, we introduce MACSFeD (Mosquito Acoustic Communication and Swarming Features Database), an interactive platform for the exploration of our comprehensive database containing 251 unique reports focusing on different aspects of mosquito acoustic communication, including hearing function, wing beat frequency and phonotaxis, as well as male swarming parameters. MACSFeD serves as an easily accessible, efficient, and robust data visualization tool for mosquito acoustic communication research. We envision that further in-depth studies could arise following the use of this new platform. Database URL: https://minmatt.shinyapps.io/MACSFeD/.


Asunto(s)
Acústica , Culicidae , Bases de Datos Factuales , Animales , Culicidae/fisiología , Masculino , Femenino , Comunicación Animal
5.
iScience ; 27(7): 110264, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39027372

RESUMEN

When Aedes albopictus mosquitoes invade regions predominated by Aedes aegypti, either the latter can be displaced or the species can coexist, with potential consequences on disease transmission. Males from both species identify females by listening for her flight sounds. Comparing male hearing systems may provide insight into how hearing could prevent interspecific mating. Here, we show that species-specific differences in female wing beat frequencies are reflected in differences in male ear mechanical tuning frequencies and sound response profiles. Though Aedes albopictus males are attracted to sound, they do not readily display abdominal bending, unlike Aedes aegypti. We observed interspecific differences in male ear mechanical, but not electrical, tuning, suggesting a conserved primary auditory processing pathway. Our work suggests a potential role for hearing in the premating isolation of Aedes aegypti and Aedes albopictus, with implications for predicting future dynamics in their sympatric relationships and our understanding of mosquito acoustic communication.

6.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39211211

RESUMEN

C-Terminal cyclic imides are post-translational modifications (PTMs) that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail. Here, we characterize the primary and secondary structures of peptides and proteins that promote intrinsic formation of C-terminal cyclic imides in comparison to deamidation, a related form of protein damage. Extrinsic effects from solution properties and stressors on the cellular proteome additionally promote C-terminal cyclic imide formation on proteins like glutathione synthetase (GSS) that are susceptible to aggregation if the protein damage products are not removed by CRBN. This systematic investigation provides insight to the regions of the proteome that are prone to these unexpectedly frequent modifications, the effects of this form of protein damage on protein stability, and the biological role of CRBN.

7.
Elife ; 122024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289340

RESUMEN

Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insufficient, necessitating innovations. In response, here we generate a next-generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Ae. aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to effectively control wild populations of disease vectors.


Asunto(s)
Aedes , Infertilidad Masculina , Infección por el Virus Zika , Virus Zika , Humanos , Masculino , Animales , Mosquitos Vectores/genética , Aedes/genética , Vectores de Enfermedades , Especificidad de la Especie , Infección por el Virus Zika/prevención & control
8.
Science ; : eadn0327, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236155

RESUMEN

Age is a major risk factor for cancer, but how aging impacts tumor control remains unclear. Here, we establish that aging of the immune system, regardless of the age of the stroma and tumor, drives lung cancer progression. Hematopoietic aging enhances emergency myelopoiesis, resulting in the local accumulation of myeloid progenitor-like cells in lung tumors. These cells are a major source of IL-1⍺ that drives the enhanced myeloid response. The age-associated decline of DNMT3A enhances IL-1⍺ production, and disrupting IL-1R1 signaling early during tumor development normalized myelopoiesis and slowed the growth of lung, colonic, and pancreatic tumors. In human tumors, we identified an enrichment for IL-1⍺-expressing monocyte-derived macrophages linked to age, poorer survival, and recurrence, unraveling how aging promotes cancer and offering actionable therapeutic strategies.

9.
Neuroimage Clin ; 42: 103585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38531165

RESUMEN

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Descanso/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Mapeo Encefálico/métodos , Mapeo Encefálico/normas
10.
Cold Spring Harb Protoc ; 2023(4): pdb.prot108010, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36223983

RESUMEN

Electrophysiological recordings taken from the antennal nerve can provide essential information on the general auditory condition of the mosquito tested. Furthermore, electrophysiological recordings provide detailed information on what types of stimulation induce the largest nerve responses. When these are used in conjunction with a vibrometer to measure the corresponding movement of the antennal ear during stimulation, a comprehensive overview of hearing function can be obtained. This protocol can be applied to male and female adults from any mosquito strain and can be scaled relative to available resources.


Asunto(s)
Fenómenos Electrofisiológicos , Animales , Masculino , Femenino , Potenciales de Acción/fisiología
11.
Neurosci Insights ; 18: 26331055231172522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255742

RESUMEN

The SARS-CoV-2 virus caused an unprecedented pandemic around the globe, infecting 36.5 million people and causing the death of over 1 million in the United States of America alone. COVID-19 patients demonstrated respiratory symptoms, cardiovascular complications, and neurologic symptoms, which in most severe cases included encephalopathy and encephalitis. Hypoxia and the uncontrolled proliferation of cytokines are commonly recognized to cause encephalopathy, while the retrograde trans-synaptic spread of the virus is thought to cause encephalitis in SARS-CoV-2-induced pathogenesis. Although recent research revealed some mechanisms explaining the development of neurologic symptoms, it still remains unclear whether interactions between these mechanisms exist. This review focuses on the discussion and analysis of previously reported hypotheses of SARS-CoV-2-induced encephalopathy and encephalitis and looks into possible overlaps between the pathogenesis of both neurological outcomes of the disease. Promising therapeutic approaches to prevent and treat SARS-CoV-2-induced neurological complications are also covered. More studies are needed to further investigate the dominant mechanism of pathogenesis for developing more effective preventative measures in COVID-19 cases with the neurologic presentation.

12.
Cold Spring Harb Protoc ; 2023(4): pdb.top107685, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36223985

RESUMEN

The acoustic physiology of mosquitoes is perhaps the most complex within the entire insect class. Past research has uncovered several of its-sometimes stunningly unconventional-principles, but many mysteries remain. Their solution necessitates a concerted transdisciplinary effort to successfully link the neuroanatomical and biophysical properties of mosquito flagellar ears to the behavioral ecology of entire mosquito populations. Neuroanatomically, mosquito ears can rival those of humans in both complexity and sheer size. The approximately 16,000 auditory hair cells within the human organ of Corti, for example, are matched by the approximately 16,000 auditory neurons in the Johnston's organ of a male Anopheles mosquito. Both human and mosquito ears receive very extensive efferent innervation, which modulates their function in ways that are as yet poorly understood. Different populations of neuronal and nonneuronal cell types divide the labor of the mosquito ear amongst themselves. Yet, what exactly this labor is, and how it is achieved, is at best vaguely known. For the majority of mosquitoes, biologically relevant sounds are inextricably linked to their flight tones. Either these flight tones are (directly) the sounds of interest or they contribute (indirectly) to the production of audible sound through a process called nonlinear distortion. Finally, male ears can generate tones themselves: The generation of an internal "phantom copy" of a female flight tone (or self-sustained oscillation) is believed to aid the male hearing process. Here, we introduce protocols that target the mosquitoes' auditory neuroanatomy, electrophysiology, and behavior to help shed light on some of these issues.


Asunto(s)
Culicidae , Animales , Humanos , Masculino , Femenino , Culicidae/fisiología , Audición/fisiología , Acústica , Fenómenos Electrofisiológicos
13.
Front Cell Dev Biol ; 11: 1123738, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923250

RESUMEN

Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception.

14.
Sci Rep ; 13(1): 383, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611081

RESUMEN

Acoustic communication signals diversify even on short evolutionary time scales. To understand how the auditory system underlying acoustic communication could evolve, we conducted a systematic comparison of the early stages of the auditory neural circuit involved in song information processing between closely-related fruit-fly species. Male Drosophila melanogaster and D. simulans produce different sound signals during mating rituals, known as courtship songs. Female flies from these species selectively increase their receptivity when they hear songs with conspecific temporal patterns. Here, we firstly confirmed interspecific differences in temporal pattern preferences; D. simulans preferred pulse songs with longer intervals than D. melanogaster. Primary and secondary song-relay neurons, JO neurons and AMMC-B1 neurons, shared similar morphology and neurotransmitters between species. The temporal pattern preferences of AMMC-B1 neurons were also relatively similar between species, with slight but significant differences in their band-pass properties. Although the shift direction of the response property matched that of the behavior, these differences are not large enough to explain behavioral differences in song preferences. This study enhances our understanding of the conservation and diversification of the architecture of the early-stage neural circuit which processes acoustic communication signals.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Masculino , Femenino , Drosophila/fisiología , Drosophila melanogaster/fisiología , Cortejo , Evolución Biológica , Neuronas , Drosophila simulans , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología
15.
Nat Commun ; 14(1): 4338, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468470

RESUMEN

Malaria mosquitoes acoustically detect their mating partners within large swarms that form transiently at dusk. Indeed, male malaria mosquitoes preferably respond to female flight tones during swarm time. This phenomenon implies a sophisticated context- and time-dependent modulation of mosquito audition, the mechanisms of which are largely unknown. Using transcriptomics, we identify a complex network of candidate neuromodulators regulating mosquito hearing in the species Anopheles gambiae. Among them, octopamine stands out as an auditory modulator during swarm time. In-depth analysis of octopamine auditory function shows that it affects the mosquito ear on multiple levels: it modulates the tuning and stiffness of the flagellar sound receiver and controls the erection of antennal fibrillae. We show that two α- and ß-adrenergic-like octopamine receptors drive octopamine's auditory roles and demonstrate that the octopaminergic auditory control system can be targeted by insecticides. Our findings highlight octopamine as key for mosquito hearing and mating partner detection and as a potential novel target for mosquito control.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Masculino , Femenino , Insecticidas/farmacología , Adrenérgicos , Octopamina , Audición , Control de Mosquitos , Malaria/prevención & control , Anopheles/fisiología , Resistencia a los Insecticidas
16.
Res Sq ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162925

RESUMEN

Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insuficient, necessitating innovations. In response, here we generate a next generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Aedes aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to control wild populations, safely curtailing disease transmission.

17.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37131747

RESUMEN

Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insufficient, necessitating innovations. In response, here we generate a next generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Aedes aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to effectively control wild populations of disease vectors.

18.
EBioMedicine ; 94: 104723, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487418

RESUMEN

BACKGROUND: Dengue virus outbreaks are increasing in number and severity worldwide. Viral transmission is assumed to require a minimum time period of viral replication within the mosquito midgut. It is unknown if alternative transmission periods not requiring replication are possible. METHODS: We used a mouse model of dengue virus transmission to investigate the potential of mechanical transmission of dengue virus. We investigated minimal viral titres necessary for development of symptoms in bitten mice and used resulting parameters to inform a new model of dengue virus transmission within a susceptible population. FINDINGS: Naïve mice bitten by mosquitoes immediately after they took partial blood meals from dengue infected mice showed symptoms of dengue virus, followed by mortality. Incorporation of mechanical transmission into mathematical models of dengue virus transmission suggest that this supplemental transmission route could result in larger outbreaks which peak sooner. INTERPRETATION: The potential of dengue transmission routes independent of midgut viral replication has implications for vector control strategies that target mosquito lifespan and suggest the possibility of similar mechanical transmission routes in other disease-carrying mosquitoes. FUNDING: This study was funded by grants from the National Health Research Institutes, Taiwan (04D2-MMMOST02), the Human Frontier Science Program (RGP0033/2021), the National Institutes of Health (1R01AI143698-01A1, R01AI151004 and DP2AI152071) and the Ministry of Science and Technology, Taiwan (MOST104-2321-B-400-016).


Asunto(s)
Aedes , Virus del Dengue , Dengue , Humanos , Animales , Ratones , Dengue/epidemiología , Brotes de Enfermedades , Mosquitos Vectores
19.
Front Neurosci ; 16: 769983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310110

RESUMEN

Background: Health systems face challenges to accelerate access to innovations that add value and avoid those unlikely to do so. This is very timely to the field of age-related sensorineural hearing loss (ARHL), where a significant unmet market need has been identified and sizeable investments made to promote the development of novel hearing therapeutics (NT). This study aims to apply health economic modeling to inform the development of cost-effective NT. Methods: We developed a decision-analytic model to assess the potential costs and effects of using regenerative NT in patients ≥50 with ARHL. This was compared to the current standard of care including hearing aids and cochlear implants. Input data was collected from systematic literature searches and expert opinion. A UK NHS healthcare perspective was adopted. Three different but related analyses were performed using probabilistic modeling: (1) headroom analysis, (2) scenario analyses, and (3) threshold analyses. Results: The headroom analysis shows an incremental net monetary benefit (iNMB) of £20,017[£11,299-£28,737] compared to the standard of care due to quality-adjusted life-years (QALY) gains and cost savings. Higher therapeutic efficacy and access for patients with all degrees of hearing loss yields higher iNMBs. Threshold analyses shows that the ceiling price of the therapeutic increases with more severe degrees of hearing loss. Conclusion: NT for ARHL are potentially cost-effective under current willingness-to-pay (WTP) thresholds with considerable room for improvement in the current standard of care pathway. Our model can be used to help decision makers decide which therapeutics represent value for money and are worth commissioning, thereby paving the way for urgently needed NT.

20.
Parasit Vectors ; 15(1): 137, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449113

RESUMEN

BACKGROUND: The primary disease vectors for dengue virus (DENV) transmission between humans are the mosquitoes Aedes aegypti and Aedes albopictus, with Ae. aegypti population size strongly correlated with DENV outbreaks. When a mosquito is infected with DENV, the virus migrates from the midgut to the salivary glands to complete the transmission cycle. How the virus crosses the hemocoel, resulting in systemic infection, is still unclear however. During viral infection and migration, the innate immune system is activated in defense. As part of cellular-mediated immunity, hemocytes are known to defend against bacteria and Plasmodium infection and may also participate in defending against DENV infection. Hemocytes are categorized into three cell types: prohemocytes, granulocytes, and oenocytoids. Here, we investigated which hemocytes can be infected by DENV and compare hemocyte infection between Ae. aegypti and Ae. albopictus. METHODS: Hemocytes were collected from Ae. aegypti and Ae. albopictus mosquitoes that were intrathoracically infected with DENV2-GFP. The collected hemocytes were then identified via Giemsa staining and examined microscopically for morphological differences and viral infection. RESULTS: All three types of hemocytes were infected by DENV, though the predominantly infected cell type was prohemocytes. In Ae. aegypti, the highest and lowest infection rates at 7 days post infection occurred in prohemocytes and granulocytes, respectively. Prohemocytes were also the primary infection target of DENV in Ae. albopictus, with similar infection rates across the other two hemocyte groups. The ratios of hemocyte composition did not differ significantly between non-infected and infected mosquitoes for either species. CONCLUSIONS: In this study, we showed that prohemocytes were the major type of hemocyte infected by DENV in both Ae. aegypti and Ae. albopictus. The infection rate of prohemocytes in Ae. albopictus was lower than that in Ae. aegypti, which may explain why systemic DENV infection in Ae. albopictus is less efficient than in Ae. aegypti and why Ae. albopictus is less correlated to dengue fever outbreaks. Future work in understanding the mechanisms behind these phenomena may help reduce arbovirus infection prevalence.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Humanos , Mosquitos Vectores , Glándulas Salivales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA