Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(11): e2205825, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587982

RESUMEN

The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1 O2 ) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Cadmio , Fármacos Fotosensibilizantes/uso terapéutico , Rayos Infrarrojos , Neoplasias/tratamiento farmacológico
2.
Adv Healthc Mater ; 11(4): e2102017, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34812594

RESUMEN

Although photodynamic therapy (PDT) is a promising approach for cancer therapy, most existing photosensitizers lack selectivity for tumor cells and the overexpressed glutathione (GSH) in tumor cells reduces the PDT efficiency. Therefore, designing photosensitizers that can be selectively activated within tumor cells and combine PDT with other therapeutic modalities represents a route for precise and efficient anticancer treatment. Herein, an organic activatable photosensitizer, CyI-DNBS, bearing 2,4-dinitrobenzenesulfonate (DNBS) as the cage group is reported. CyI-DNBS can be uptaken by cancer cells after which the cage group is selectively removed by the intracellular GSH, resulting in the generation of SO2 for gas therapy. The reaction also releases the activated photosensitizer, CyI-OH, that can produce singlet oxygen (1 O2 ) under red light irradiation. Therefore, CyI-DNBS targets cancer cells for both photodynamic and SO2 gas therapy treatments. The activatable photosensitizer provides a new approach for PDT and SO2 gas synergistic therapy and demonstrates excellent anticancer effect in vivo.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Línea Celular Tumoral , Glutatión , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA