Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biochem Biophys Res Commun ; 730: 150392, 2024 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-39003867

RESUMEN

BACKGROUND: One of the obstacles to autologous chondrocyte implantation (ACI) is obtaining a large quantity of chondrocytes without depletion of their properties. The conditioned medium (CM) from different subpopulations of stem cells (mesenchymal stromal cells (MSC) or induced pluripotent stem cells (iPSC)) could be a gamechanger. MSCs' potential is related to the donor's health and age, which could be omitted when, as a source, iPSCs are used. There is a lack of data regarding their use in the chondrocyte culture expansion. Thus, we wanted to verify whether iPSC-CM could be beneficial for the cell culture of primary chondrocyte cells. METHODS: We added the iPSC-CMs from GPCCi001-A and ND 41658*H cells to the culture of primary chondrocyte cell lines isolated from OA patients (n = 6) for other two passages. The composition of the CM was evaluated using Luminex technology. Then, we analysed the senescence, proliferation rate and using flow cytometry: viability, distribution of cell cycle phases, production of reactive oxygen species (ROS) and double-strand breaks. The cartilage-related markers were evaluated using Western blot and immunofluorescence. Additionally, a three-dimensional cell culture was used to determine the potential to form cartilage particles. RESULTS: iPSC-CM increased proliferation and diminished cell ROS production and senescence. CM influenced the cartilage-related protein expression and promoted the growth of cartilage particles. The cell exposed to CM did not lose the ECM proteins, suggesting the chondroprotective effect for prolonged culture time. CONCLUSION: Our preliminary results suggest a beneficial effect on maintaining chondrocyte biology during in vitro expansion.


Asunto(s)
Proliferación Celular , Condrocitos , Células Madre Pluripotentes Inducidas , Condrocitos/metabolismo , Condrocitos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Secretoma/metabolismo , Línea Celular , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Especies Reactivas de Oxígeno/metabolismo , Senescencia Celular
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928200

RESUMEN

Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of EGLN1-3, HIF1A, CA9, VEGF, and GLUT1 at the mRNA level and EGLN1 protein levels. Methylation levels of EGLNs and HIF1A were assessed through high-resolution melting analysis. Bioinformatics tools were employed to characterize associations between EGLN1-3 and HIF1A expression and methylation. We found significantly higher mRNA levels of EGLN3, HIF1A, GLUT1, VEGF, and CA9 (p = 0.021; p < 0.0001; p < 0.0001; p = 0.004, and p < 0.0001, respectively) genes in tumor tissues compared to normal ones and downregulation of the EGLN1 mRNA level in tumor tissues (p = 0.0013). In HNSCC patients with hypermethylation of HIF1A in normal tissue, we noted a reduction in HIF1A mRNA levels compared to tumor tissue (p = 0.04). In conclusion, the differential expression of EGLN and HIF1A genes in HNSCC tumors compared to normal tissues influences patients' overall survival, highlighting their role in tumor development. Moreover, DNA methylation could be responsible for HIF1A suppression in the normal tissues of HNSCC patients.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Femenino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Masculino , Línea Celular Tumoral , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Persona de Mediana Edad , Prolil Hidroxilasas/metabolismo , Prolil Hidroxilasas/genética , Anciano , Carcinogénesis/genética , Adulto
3.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39408826

RESUMEN

Research on different types of ionizing radiation's effects has been ongoing for years, revealing its efficacy in damaging cancer cells. Solid tumors comprise diverse cell types, each being able to respond differently to radiation. This study evaluated the radiobiological response of established (MDA-MB-231 (Triple negative breast cancer, TNBC), MCF-7 (Luminal A)) and patient-derived malignant cell lines, cancer-associated fibroblasts, and skin fibroblasts following proton IRR. All cell line types were irradiated with the proton dose of 2, 4, and 6 Gy. The radiobiological response was assessed using clonogenic assay, γH2AX, and p53 staining. It was noticeable that breast cancer lines of different molecular subtypes displayed no significant variations in their response to proton IRR. In terms of cancer-associated fibroblasts extracted from the tumor tissue, the line derived from a TNBC subtype tumor demonstrated higher resistance to ionizing radiation compared to lines isolated from luminal A tumors. Fibroblasts extracted from patients' skin responded identically to all doses of proton radiation. This study emphasizes that tumor response is not exclusively determined by the elimination of breast cancer cells, but also takes into account tumor microenvironmental variables and skin reactions.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Terapia de Protones , Células MCF-7 , Protones , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/radioterapia , Histonas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/efectos de la radiación , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Tolerancia a Radiación , Radiación Ionizante
4.
Molecules ; 29(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39407467

RESUMEN

Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.


Asunto(s)
Antibacterianos , Curcumina , Luz , Curcumina/farmacología , Curcumina/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana , Aliivibrio fischeri/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Supervivencia Celular/efectos de los fármacos , Oxígeno Singlete/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Fotoquimioterapia , Bacterias/efectos de los fármacos , Luz Azul
5.
Rep Pract Oncol Radiother ; 29(2): 148-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143964

RESUMEN

Background: Head and neck squamous carcinoma (HNSC) is the sixth most common neoplasm, with a 40-50% overall survival rate. HNSC standard treatment depends on tumor size, metastasis or human papillomavirus (HPV) status including surgery, chemotherapy, and radiotherapy. The last two may lead to defects in the tumor microenvironment and cancer cell biology as disorders in DNA damage repair systems. Here, we evaluate the correlation between single nucleotide polymorphism (SNP) rs2228001 in the XPC gene with the early and late adverse effects of radiotherapy, determine the distribution of the SNP and post-treatment follow-up in HNSC patients. Materials and methods: Head and neck cancer tissues and clinical data were obtained from 79 patients. The SNP of the XPC gene (rs2228001) was evaluated with polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP). The chi-square test was used to determine the correlation between mutation and adverse effects occurrence. Results/Conclusion: Single nucleotide polymorphism rs2228001 in the XPC gene is correlated with the early adverse effect of skin reaction and the late adverse effect of elevated C-reactive protein (CRP) levels in the HNSC patients.

6.
Rep Pract Oncol Radiother ; 25(1): 46-49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889920

RESUMEN

Coronary disease induced by previous radiotherapy is the most common cause of death among patients treated with radiotherapy for cancer. Risk factors that may affect the frequency and intensity of radiotherapy's cardiac toxicity are primarily the radiation dose and the volume of the heart exposed to radiation. The prolonged survival time of patients after radiotherapy, but also the intensive development of modern radiotherapy techniques results in the necessity of precise estimation of both tumor control probability, and the risk of normal tissue damage, thus the models describing the probability of complications in normal tissues have also been developed. The response from the cardiovascular system to high-dose radiation is known and associated with a pro-inflammatory response. However, the effect of low doses may be completely different because it induces an anti-inflammatory response. Also, there is no unambiguous answer to the question of whether RICD is a deterministic effect. Moreover, there is a lack of literature data on the use of known radiobiological models to assess the risk of cardiovascular complications. The models described are general and concerns any healthy tissue. Therefore, when planning treatment for patients, particular attention should be paid to the dose and area of ​​the heart to be irradiated.

7.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357387

RESUMEN

MicroRNAs (miRNA) play an essential role in the regulation of gene expression and influence signaling networks responsible for several cellular processes like differentiation of pluripotent stem cells. Despite several studies on the neurogenesis process, no global analysis of microRNA expression during differentiation of induced pluripotent stem cells (iPSC) to neuronal stem cells (NSC) has been done. Therefore, we compared the profile of microRNA expression in iPSC lines and in NSC lines derived from them, using microarray-based analysis. Two different protocols for NSC formation were used: Direct and two-step via neural rosette formation. We confirmed the new associations of previously described miRNAs in regulation of NSC differentiation from iPSC. We discovered upregulation of miR-10 family, miR-30 family and miR-9 family and downregulation of miR-302 and miR-515 family expression. Moreover, we showed that miR-10 family play a crucial role in the negative regulation of genes expression belonging to signaling pathways involved in neural differentiation: WNT signaling pathway, focal adhesion, and signaling pathways regulating pluripotency of stem cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Neurogénesis/genética , Biomarcadores , Línea Celular , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Transcriptoma
8.
Rep Pract Oncol Radiother ; 24(4): 307-314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31193459

RESUMEN

Over the past two decades nanotechnology has become an important part of novel medical research. Researchers have made great progress in developing nanotechnology applications used for detecting and treating oncological diseases. Recently, many research groups have focused on the use of superparamagnetic iron oxide nanoparticles (SPIONs) in cancer treatment. Due to the range of therapeutic properties and possibilities of various modifications, SPIONs are a promising and multifunctional tool in various cancer therapies and may help to overcome the limitations of conventional therapies. Moreover, it is still necessary to develop new methods of treatment with expected properties, such as lower toxicity, long-lasting effectiveness and higher selectivity. Analyzing the literature data, we found that currently SPIONs are used in the transport of drugs, immunotherapy and hyperthermia. The main aim of this review is to present various cancer treatment therapies utilizing SPIONs, the importance of the experiments carried out by research groups and further perspectives in the nanotechnological use of SPIONs.

9.
Int J Mol Sci ; 19(2)2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-29439516

RESUMEN

Human induced pluripotent stem cells (hiPSCs) constitute an important breakthrough in regenerative medicine, particularly in orthopedics, where more effective treatments are urgently needed. Despite the promise of hiPSCs only limited data on in vitro chondrogenic differentiation of hiPSCs are available. Therefore, we compared the gene expression profile of pluripotent genes in hiPSC-derived chondrocytes (ChiPS) to that of an hiPSC cell line created by our group (GPCCi001-A). The results are shown on heatmaps and plots and confirmed by Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) analysis. Unlike the ChiPS, our GPCCi001-A cells maintained their pluripotency state during long-term culture, thus demonstrating that this cell line was comprised of stable, fully pluripotent hiPSCs. Moreover, these chondrocyte-like cells not only presented features that are characteristic of chondrocytes, but they also lost their pluripotency, which is an important advantage in favor of using this cell line in future clinical studies.


Asunto(s)
Condrocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Células Cultivadas , Condrocitos/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología
10.
Biotechnol Lett ; 38(10): 1665-72, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27341837

RESUMEN

Head and neck squamous cell carcinoma is the sixth leading cause of cancer worldwide. The most common risk factors are carcinogens (tobacco, alcohol), and infection of the human papilloma virus. Surgery is still considered as the treatment of choice in case of head and neck cancer, followed by a reconstructive surgery to enhance the quality of life in the patients. However, the widespread use of artificial implants does not provide appropriate physiological activities and often cannot act as a long-term solution for the patients. Here we review the applicability of multiple stem cell types for tissue engineering of cartilage, trachea, vocal folds and nerves for head and neck injuries. The ability of the cells to self-renew and maintain their pluripotency state makes them an attractive tool in tissue engineering.


Asunto(s)
Carcinoma de Células Escamosas/cirugía , Neoplasias de Cabeza y Cuello/cirugía , Células Madre/citología , Ingeniería de Tejidos/métodos , Cartílago/inervación , Cartílago/fisiología , Cartílago/trasplante , Diferenciación Celular , Humanos , Calidad de Vida , Procedimientos de Cirugía Plástica , Tráquea/inervación , Tráquea/fisiología , Tráquea/trasplante , Pliegues Vocales/inervación , Pliegues Vocales/fisiología , Pliegues Vocales/trasplante
11.
Radiol Oncol ; 49(3): 209-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26401125

RESUMEN

BACKGROUND: Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented. CONCLUSIONS: In summary, despite the many threats of ionizing radiation concerning genomic instability, subjecting cells to the appropriate dosage of ionizing radiation may become a useful method for enhancing directed differentiation in certain stem cell types.

12.
EXCLI J ; 23: 81-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343742

RESUMEN

In recent decades, significant progress has been made in understanding the molecular characteristics of cancer and its microenvironment, leading to the development of life-saving treatments. However, patients often experience side effects from standard therapies, highlighting the need for personalized medicine. Personalized medicine aims to customize drug therapy and preventive care based on individual patients' specific requirements. The heterogeneity within tumors and among patients necessitates personalized medicine approaches. Patient-derived organoids (PDOs), xenografts (PDXs), and explants (PDEs) have emerged as valuable models for studying tumor behaviour and drug response. This paper aims to summarize the latest advancements in patient-derived explants, focusing on their potential utility in the clinic. Different methods for culturing PDEs, including the free-floating approach, the grid method, and sponge scaffolds, are discussed. These approaches provide opportunities for long-term viability, oxygen and nutrient supply, and maintenance of tissue integrity. Additionally, various solid tumor models using PDEs are highlighted, together with assays to study PDE viability, characteristics, and response to drug treatment.

13.
Front Mol Biosci ; 11: 1343523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455762

RESUMEN

The tumor microenvironment (TME) is a complex ecosystem of cells, signaling molecules, and extracellular matrix components that profoundly influence cancer progression. Among the key players in the TME, cancer-associated fibroblasts (CAFs) have gained increasing attention for their diverse and influential roles. CAFs are activated fibroblasts found abundantly within the TME of various cancer types. CAFs contribute significantly to tumor progression by promoting angiogenesis, remodeling the extracellular matrix, and modulating immune cell infiltration. In order to influence the microenvironment, CAFs engage in cross-talk with immune cells, cancer cells, and other stromal components through paracrine signaling and direct cell-cell interactions. This cross-talk can result in immunosuppression, tumor cell proliferation, and epithelial-mesenchymal transition, contributing to disease progression. Emerging evidence suggests that CAFs play a crucial role in therapy resistance, including resistance to chemotherapy and radiotherapy. CAFs can modulate the tumor response to treatment by secreting factors that promote drug efflux, enhance DNA repair mechanisms, and suppress apoptosis pathways. This paper aims to understand the multifaceted functions of CAFs within the TME, discusses cross-talk between CAFs with other TME cells, and sheds light on the contibution of CAFs to therapy resistance. Targeting CAFs or disrupting their cross-talk with other cells holds promise for overcoming drug resistance and improving the treatment efficacy of various cancer types.

14.
Adv Med Sci ; 69(2): 368-376, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047970

RESUMEN

Hypoxia in the tumor core negatively affects the outcome of patients with head and neck squamous cell carcinoma (HNSCC). Nevertheless, its role in predicting treatment response requires further exploration. Typically, reduced oxygen levels in the tumor core correlate with diminished efficacy of radiotherapy, chemotherapy, and immunotherapy, which are commonly used for HNSCC patients' treatment. Understanding the mechanistic underpinnings of these varied treatment responses in HNSCC is crucial for enhancing therapeutic outcomes and extending patients' overall survival (OS) rates. Standard monolayer cell culture conditions have major limitations in mimicking tumor physiological features and the complexity of the tumor microenvironment. Three-dimensional (3D) cell cultures enable the recreation of the in vivo tumor attributes, encompassing oxygen and nutrient gradients, cellular morphology, and intracellular connections. It is vital to use the 3D model in treatment response studies to mimic the tumor microenvironment, as evidenced by the decreased sensitivity of 3D structures to anticancer therapy. Accordingly, the aim of the study was to delineate the utility of the 3D models of hypoxic head and neck tumors in drug screening and treatment response studies.

15.
Front Oncol ; 14: 1402126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966069

RESUMEN

Background: RNA methyltransferase-like 3 (METTL3) is responsible for methyl group transfer in the progression of N 6-methyladenosine (m6A) modification. This epigenetic feature contributes to the structural and functional regulation of RNA and consequently may promote tumorigenesis, tumor progression, and cellular response to anticancer treatment (chemo-, radio-, and immunotherapy). In head and neck squamous cell carcinoma (HNSCC), the commonly used chemotherapy is cisplatin. Unfortunately, cisplatin resistance is still a major cause of tumor relapse and patients' death. Thus, this study aimed to investigate the role of METTL3 on cellular response to cisplatin in HNSCC in vitro models. Materials and methods: HNSCC cell lines (H103, FaDu, and Detroit-562) with stable METTL3 knockdown (sgMETTL3) established with CRISPR-Cas9 system were treated with 0.5 tolerable plasma level (TPL) and 1 TPL of cisplatin. Further, cell cycle distribution, apoptosis, CD44/CD133 surface marker expression, and cell's ability to colony formation were analyzed in comparison to controls (cells transduced with control sgRNA). Results: The analyses of cell cycle distribution and apoptosis indicated a significantly higher percentage of cells with METTL3 knockdown 1) arrested in the G2/S phase and 2) characterized as a late apoptotic or death in comparison to control. The colony formation assay showed intensified inhibition of a single cell's ability to grow into a colony in FaDu and Detroit-562 METTL3-deficient cells, while a higher colony number was observed in H103 METTL3 knockdown cells after cisplatin treatment. Also, METTL3 deficiency significantly increased cancer stem cell markers' surface expression in all studied cell lines. Conclusion: Our findings highlight the significant influence of METTL3 on the cellular response to cisplatin, suggesting its potential as a promising therapeutic target for addressing cisplatin resistance in certain cases of HNSCC.

16.
Stem Cell Rev Rep ; 19(5): 1185-1213, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36790694

RESUMEN

BACKGROUND: The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW: In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS: CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE: This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Humanos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Osteoartritis/terapia , Condrocitos , Citocinas/metabolismo
17.
Pharmaceutics ; 15(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986725

RESUMEN

Gold nanoparticles (AuNPs), as an agent enhancing radiosensitivity, play a key role in the potential treatment of breast cancer (BC). Assessing and understanding the kinetics of modern drug delivery systems is a crucial element that allows the implementation of AuNPs in clinical treatment. The main objective of the study was to assess the role of the properties of gold nanoparticles in the response of BC cells to ionizing radiation by comparing 2D and 3D models. In this research, four kinds of AuNPs, different in size and PEG length, were used to sensitize cells to ionizing radiation. The in vitro viability, uptake, and reactive oxygen species generation in cells were investigated in a time- and concentration-dependent manner using 2D and 3D models. Next, after the previous incubation with AuNPs, cells were irradiated with 2 Gy. The assessment of the radiation effect in combination with AuNPs was analyzed using the clonogenic assay and γH2AX level. The study highlights the role of the PEG chain in the efficiency of AuNPs in the process of sensitizing cells to ionizing radiation. The results obtained imply that AuNPs are a promising solution for combined treatment with radiotherapy.

18.
Cells ; 11(3)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35159338

RESUMEN

The development of induced pluripotent stem cells has brought unlimited possibilities to the field of regenerative medicine. This could be ideal for treating osteoarthritis and other skeletal diseases, because the current procedures tend to be short-term solutions. The usage of induced pluripotent stem cells in the cell-based regeneration of cartilage damages could replace or improve on the current techniques. The patient's specific non-invasive collection of tissue for reprogramming purposes could also create a platform for drug screening and disease modelling for an overview of distinct skeletal abnormalities. In this review, we seek to summarise the latest achievements in the chondrogenic differentiation of pluripotent stem cells for regenerative purposes and disease modelling.


Asunto(s)
Cartílago Articular , Células Madre Pluripotentes Inducidas , Diferenciación Celular , Condrogénesis , Humanos , Medicina Regenerativa
19.
Am J Cancer Res ; 12(9): 4411-4427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225645

RESUMEN

Cancer-associated fibroblasts are a highly heterogeneous group of cells whose phenotypes and gene alterations are still under deep investigation. As a part of tumor microenvironment, they are the focus of a growing number of studies. Cancer-associated fibroblasts might become a new target of breast cancer therapy, but still more tests and analyses are needed to understand mechanisms and interactions between them and breast cancer cells. The study aimed to isolate cancer associated fibroblasts from breast cancer tissue and to phenotype the isolated cell lines. We focused on various cancer-associated fibroblast characteristic biomarkers and those that might differentiate various cancer-associated fibroblasts' subtypes. Patients with a histological diagnosis of invasive breast cancer (diameter ≤15 mm) and qualified for primary surgical treatment were enrolled in the study. Cell lines were isolated from breast cancer biopsy. For the phenotyping, we used flow cytometry, immunofluorescence and RT-qPCR analysis. Based on our study, there was no indication of a clear pattern in the cancer-associated fibroblasts' classification. Results of cancer-associated fibroblasts expression were highly heterogeneous, and specific subtypes were not defined. Moreover, comparing cancer-associated fibroblasts divided into groups based on BC subtypes from which they were isolated also did not allow to notice of any clear pattern of expressions. In the future, a higher number of analyzed cancer-associated fibroblast cell lines should be investigated to find expression schemes.

20.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744240

RESUMEN

Wound healing and skin tissue regeneration remain the most critical challenges faced by medical professionals. Titanium(IV) oxide-based materials were proposed as components of pharmaceutical formulations for the treatment of difficult-to-heal wounds and unsightly scarring. A gallic acid-functionalized TiO2 nanomaterial (TiO2-GA) was obtained using the self-assembly technique and characterized using the following methods: scanning electron microscopy (SEM), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), X-ray powder diffraction (XRPD), infrared spectroscopy (IR), Raman spectroscopy and thermogravimetry (TG). Additionally, physicochemical and biological tests (DPPH assay, Microtox® acute toxicity test, MTT assay) were performed to assess antioxidant properties as well as to determine the cytotoxicity of the novel material against eukaryotic (MRC-5 pd19 fibroblasts) and prokaryotic (Staphylococcus aureus, Escherichia coli, Candida albicans, Aliivibrio fischeri) cells. To determine the photocytotoxicity of the material, specific tests were carried out with and without exposure to visible light lamps (425 nm). Following the results, the TiO2-GA material could be considered an additive to dressings and rinsing suspensions for the treatment of difficult-to-heal wounds that are at risk of bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA