Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Dev Biol ; 459(1): 55-56, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32098668

RESUMEN

Careers outside of the traditional academic track are becoming more and more common, as well as increasingly more desirable. In reality, a relatively small number of recent PhD graduates ends up staying in academia. Many venture into other types of jobs in a large part because they are no longer interested in the academic route and/or even being at the bench. I ended up taking my top-notch scientific training and applying it to a career in finance, specifically healthcare investment banking. This article tells my story and the impact it had on my life.


Asunto(s)
Cuenta Bancaria , Selección de Profesión , Movilidad Laboral , Financiación de la Atención de la Salud , Inversiones en Salud , Investigadores , Femenino , Humanos , Aprendizaje , Acontecimientos que Cambian la Vida , Biología Marina , Mentores
2.
Development ; 137(3): 519-29, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20081196

RESUMEN

Little is known about the genetic pathways and cellular processes responsible for regional differences in cerebellum foliation, which interestingly are accompanied by regionally distinct afferent circuitry. We have identified the Engrailed (En) homeobox genes as being crucial to producing the distinct medial vermis and lateral hemisphere foliation patterns in mammalian cerebella. By producing a series of temporal conditional mutants in En1 and/or En2, we demonstrate that both En genes are required to ensure that folia exclusive to the vermis or hemispheres form in the appropriate mediolateral position. Furthermore, En1/En2 continue to regulate foliation after embryonic day 14, at which time Fgf8 isthmic organizer activity is complete and the major output cells of the cerebellar cortex have been specified. Changes in spatially restricted gene expression occur prior to foliation in mutants, and foliation is altered from the onset and is accompanied by changes in the thickness of the layer of proliferating granule cell precursors. In addition, the positioning and timing of fissure formation are altered. Thus, the En genes represent a new class of genes that are fundamental to patterning cerebellum foliation throughout the mediolateral axis and that act late in development.


Asunto(s)
Tipificación del Cuerpo/genética , Cerebelo/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Corteza Cerebelosa/embriología , Corteza Cerebelosa/crecimiento & desarrollo , Cerebelo/embriología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/fisiología , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/fisiología
3.
Cerebellum ; 12(6): 950-5, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23703312

RESUMEN

Understanding the contribution of cerebellar dysfunction to complex neurological diseases such as autism spectrum disorders (ASD) is an ongoing topic of investigation. In a recent paper, Tsai et al. (Nature 488:647-651, 2012) used a powerful combination of conditional mouse genetics, electrophysiology, behavioral tests, and pharmacological manipulations to address the role of Tuberous sclerosis complex 1 (Tsc1) in Purkinje cells and cerebellar function. The authors make the staggering discovery that morphological and electrophysiological defects in Purkinje cells are linked to system-wide ASD-like behavioral deficits. In this journal club, I discuss the major findings of this paper and critically assess the implications of this seminal work.

4.
J Neurosci ; 31(30): 11055-69, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21795554

RESUMEN

Two recently generated targeted mouse alleles of the neurogenic gene Ascl1 were used to characterize cerebellum circuit formation. First, genetic inducible fate mapping (GIFM) with an Ascl1(CreER) allele was found to specifically mark all glial and neuron cell types that arise from the ventricular zone (vz). Moreover, each cell type has a unique temporal profile of marking with Ascl1(CreER) GIFM. Of great utility, Purkinje cells (Pcs), an early cohort of Bergmann glia, and four classes of GABAergic interneurons can be genetically birth dated during embryogenesis using Ascl1(CreER) GIFM. Astrocytes and oligodendrocytes, in contrast, express Ascl1(CreER) throughout their proliferative phase in the white matter. Interestingly, the final position each neuron type acquires differs depending on when it expresses Ascl1. Interneurons (including candelabrum) attain a more outside position the later they express Ascl1, whereas Pcs have distinct settling patterns each day they express Ascl1. Second, using a conditional Ascl1 allele, we discovered that Ascl1 is differentially required for generation of most vz-derived cells. Mice lacking Ascl1 in the cerebellum have a major decrease in three types of interneurons with a tendency toward a loss of later-born interneurons, as well as an imbalance of oligodendrocytes and astrocytes. Double-mutant analysis indicates that a related helix-loop-helix protein, Ptf1a, functions with Ascl1 in generating interneurons and Pcs. By fate mapping vz-derived cells in Ascl1 mutants, we further discovered that Ascl1 plays a specific role during the time period when Pcs are generated in restricting vz progenitors from becoming rhombic lip progenitors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo , Cerebelo/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Tipificación del Cuerpo/genética , Mapeo Encefálico , Bromodesoxiuridina/metabolismo , Ciclo Celular , Proliferación Celular , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/clasificación , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/citología , Proteínas/genética , ARN no Traducido , Tinción con Nitrato de Plata/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
Neuroimage ; 56(3): 1251-8, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21356319

RESUMEN

With increasing efforts to develop and utilize mouse models of a variety of neuro-developmental diseases, there is an urgent need for sensitive neuroimaging methods that enable in vivo analysis of subtle alterations in brain anatomy and function in mice. Previous studies have shown that the brains of Fibroblast Growth Factor 17 null mutants (Fgf17(-/-)) have anatomical abnormalities in the inferior colliculus (IC)-the auditory midbrain-and minor foliation defects in the cerebellum. In addition, changes in the expression domains of several cortical patterning genes were detected, without overt changes in forebrain morphology. Recently, it has also been reported that Fgf17(-/-) mutants have abnormal vocalization and social behaviors, phenotypes that could reflect molecular changes in the cortex and/or altered auditory processing / perception in these mice. We used manganese (Mn)-enhanced magnetic resonance imaging (MEMRI) to analyze the anatomical phenotype of Fgf17(-/-) mutants in more detail than achieved previously, detecting changes in IC, cerebellum, olfactory bulb, hypothalamus and frontal cortex. We also used MEMRI to characterize sound-evoked activity patterns, demonstrating a significant reduction of the active IC volume in Fgf17(-/-) mice. Furthermore, tone-specific (16- and 40-kHz) activity patterns in the IC of Fgf17(-/-) mice were observed to be largely overlapping, in contrast to the normal pattern, separated along the dorsal-ventral axis. These results demonstrate that Fgf17 plays important roles in both the anatomical and functional development of the auditory midbrain, and show the utility of MEMRI for in vivo analyses of mutant mice with subtle brain defects.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Manganeso , Mesencéfalo/anatomía & histología , Mesencéfalo/fisiología , Estimulación Acústica , Animales , Conducta Animal/fisiología , Interpretación Estadística de Datos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Colículos Inferiores/anatomía & histología , Colículos Inferiores/fisiología , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Fenotipo
6.
Biol Psychiatry ; 83(6): 518-529, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29150182

RESUMEN

BACKGROUND: Platelet-activating factor acetylhydrolase 1B1 (LIS1), a critical mediator of neuronal migration in developing brain, is expressed throughout life. However, relatively little is known about LIS1 function in the mature brain. We previously demonstrated that LIS1 involvement in the formation and turnover of synaptic protrusions and synapses of young brain after neuronal migration is complete. Here we examine the requirement for LIS1 to maintain hippocampal circuit function in adulthood. METHODS: Effects of conditional Lis1 inactivation in excitatory pyramidal neurons, starting in juvenile mouse brain, were probed using high-resolution approaches combining mouse genetics, designer receptor exclusively activated by designer drug technology to specifically manipulate CA1 pyramidal neuron excitatory activity, electrophysiology, hippocampus-selective behavioral testing, and magnetic resonance imaging tractography to examine the connectivity of LIS1-deficient neurons. RESULTS: We found progressive excitatory and inhibitory postsynaptic dysfunction as soon as 10 days after conditional inactivation of Lis1 targeting CA1 pyramidal neurons. Surprisingly, by postnatal day 60 it also caused CA1 histological disorganization, with a selective decline in parvalbumin-expressing interneurons and further reduction in inhibitory neurotransmission. Accompanying these changes were behavioral and cognitive deficits that could be rescued by either designer receptor exclusively activated by designer drug-directed specific increases in CA1 excitatory transmission or pharmacological enhancement of gamma-aminobutyric acid transmission. Lagging behind electrophysiological changes was a progressive, selective decline in neural connectivity, affecting hippocampal efferent pathways documented by magnetic resonance imaging tractography. CONCLUSIONS: LIS1 supports synaptic function and plasticity of mature CA1 neurons. Postjuvenile loss of LIS1 disrupts the structure and cellular composition of the hippocampus, its connectivity with other brain regions, and cognition dependent on hippocampal circuits.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Cognición/fisiología , Hipocampo/citología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/fisiología , Sinapsis/fisiología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Movimiento Celular/genética , Clonazepam/farmacología , Cognición/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Miedo/fisiología , Moduladores del GABA/farmacología , Hipocampo/diagnóstico por imagen , Locomoción/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Neuronas/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reconocimiento en Psicología/fisiología , Sinapsis/efectos de los fármacos
7.
EMBO Mol Med ; 5(4): 591-607, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23483716

RESUMEN

LIS1 (PAFAH1B1) mutation can impair neuronal migration, causing lissencephaly in humans. LIS1 loss is associated with dynein protein motor dysfunction, and disrupts the actin cytoskeleton through disregulated RhoGTPases. Recently, LIS1 was implicated as an important protein-network interaction node with high-risk autism spectrum disorder genes expressed in the synapse. How LIS1 might participate in this disorder has not been investigated. We examined the role of LIS1 in synaptogenesis of post-migrational neurons and social behaviour in mice. Two-photon imaging of actin-rich dendritic filopodia and spines in vivo showed significant reductions in elimination and turnover rates of dendritic protrusions of layer V pyramidal neurons in adolescent Lis1(+/-) mice. Lis1(+/-) filopodia on immature hippocampal neurons in vitro exhibited reduced density, length and RhoA dependent impaired dynamics compared to Lis1(+/+) . Moreover, Lis1(+/-) adolescent mice exhibited deficits in social interaction. Lis1 inactivation restricted to the postnatal hippocampus resulted in similar deficits in dendritic protrusion density and social interactions. Thus, LIS1 plays prominently in dendritic filopodia dynamics and spine turnover implicating reduced dendritic spine plasticity as contributing to developmental autistic-like behaviour.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Trastorno Autístico/metabolismo , Trastorno Autístico/psicología , Espinas Dendríticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Seudópodos/metabolismo , Sinapsis/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Trastorno Autístico/genética , Conducta , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
8.
Development ; 135(5): 889-98, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18216176

RESUMEN

Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development.


Asunto(s)
Cerebelo/embriología , Embrión de Mamíferos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Mesencéfalo/embriología , Animales , Muerte Celular , Cerebelo/anatomía & histología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Humanos , Integrasas/metabolismo , Mesencéfalo/anatomía & histología , Ratones , Transducción de Señal
9.
Neural Dev ; 2: 26, 2007 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-18053187

RESUMEN

BACKGROUND: The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. RESULTS: Using a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. CONCLUSION: We present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cerebelo/embriología , Cerebelo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Corteza Cerebelosa/citología , Corteza Cerebelosa/embriología , Corteza Cerebelosa/metabolismo , Cerebelo/citología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Índice Mitótico , Modelos Neurológicos , Morfogénesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuronas/citología , Células de Purkinje/citología , Células de Purkinje/metabolismo , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA