Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(9): 2354-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884201

RESUMEN

The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (-560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km(2)) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium ((10)Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf.

2.
Proc Natl Acad Sci U S A ; 109(43): 17328-35, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22949677

RESUMEN

Chlorophylls are essential components of the photosynthetic apparati that sustain all of the life forms that ultimately depend on solar energy. However, a drawback of the extraordinary photosensitizing efficiency of certain chlorophyll species is their ability to generate harmful singlet oxygen. Recent studies have clarified the catabolic processes involved in the detoxification of chlorophylls in land plants, but little is understood about these strategies in aquatic ecosystem. Here, we report that a variety of heterotrophic protists accumulate the chlorophyll a catabolite 13(2),17(3)-cyclopheophorbide a enol (cPPB-aE) after their ingestion of algae. This chlorophyll derivative is nonfluorescent in solution, and its inability to generate singlet oxygen in vitro qualifies it as a detoxified catabolite of chlorophyll a. Using a modified analytical method, we show that cPPB-aE is ubiquitous in aquatic environments, and it is often the major chlorophyll a derivative. Our findings suggest that cPPB-aE metabolism is one of the most important, widely distributed processes in aquatic ecosystems. Therefore, the herbivorous protists that convert chlorophyll a to cPPB-aE are suggested to play more significant roles in the modern oceanic carbon flux than was previously recognized, critically linking microscopic primary producers to the macroscopic food web and carbon sequestration in the ocean.


Asunto(s)
Clorofila/metabolismo , Herbivoria , Plantas/metabolismo , Evolución Biológica , Fotosíntesis
3.
PLoS One ; 16(2): e0247436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33630926

RESUMEN

Although most fatalities in tsunami-related disasters are conjectured to be a result of drowning, injury risk owing to collision with other floating debris or fixed buildings has not been studied sufficiently. In this study, the impact force corresponding to the collision of a concrete block and drifting test body in a tsunami wave was experimentally investigated, and the injury risk was evaluated in terms of different biomechanical indexes; specifically, maximum acceleration, head injury criterion, and impact force. The injury risk indicated by the considered indexes was reasonably low. It was noted that if a healthy adult collided with a concrete wall under a velocity of 2.5 m s-1 and wave height of 0.59 m, the adult would likely not be critically injured. However, a similar collision impact poses considerable risk to infants and children, as well as the more sensitive regions of the adult body. Moreover, in the case of large tsunamis, such as that in the 2011 Great East Japan Earthquake, a drifting person may be at considerable risk for injuries. The collision impact occurring on the tip of a surge flow is notably significantly larger than that on a bore flow. This is because a surge flow, which arrives at the concrete block earlier than a bore flow, forms a certain water layer along the concrete wall and that layer acts as a cushion for any body drifting on the bore flow, indicating the importance of such a buffering effect. These findings can provide practical guidance regarding the formulation of effective tsunami-protection measures.


Asunto(s)
Tsunamis/estadística & datos numéricos , Traumatismos Craneocerebrales , Desastres/estadística & datos numéricos , Terremotos/estadística & datos numéricos , Humanos , Japón
4.
PLoS One ; 13(5): e0197498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29791490

RESUMEN

We investigated a method for surviving tsunamis that involved the use of personal flotation devices (PFDs). In our work, we succeeded in numerically demonstrating that the heads of all the dummies wearing PFDs remained on the surface and were not dragged underwater after the artificial tsunami wave hit them. In contrast, the heads of all the dummies not wearing PFDs were drawn underwater immediately; these dummies were subsequently entrapped in a vortex. The results of our series of experiments are important as a first step to preventing the tragedies caused by tsunamis.


Asunto(s)
Sobrevivientes , Tsunamis , Humanos , Equipos de Seguridad , Análisis de Supervivencia , Grabación en Video
5.
Phytochemistry ; 66(8): 911-20, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15845409

RESUMEN

We determined hydrogen, carbon and nitrogen isotopic compositions of chlorophylls a and b isolated from leaves of five C3 higher plant species (Benthamidia japonica, Prunus japonica, Acer carpinifolium, Acer argutum and Querus mongloica), and hydrogen and carbon isotopic compositions of phytol and chlorophyllides in the chlorophylls to understand isotopic fractionations associated with chlorophyll biosynthesis in these species. Chlorophylls are depleted in D relative to ambient water by approximately 189 per thousand and enriched in (13)C relative to bulk tissue by approximately 1.6 per thousand. These data can be explained by the contribution of isotopic fractionations during phytol and chlorophyllide biosyntheses. Phytol is more depleted in both D (by approximately 308 per thousand) and (13)C (by approximately 4.3 per thousand), while chlorophyllides are less depleted in D (by approximately 44 per thousand) and enriched in (13)C (by approximately 4.8 per thousand). Such inhomogeneous distribution of isotopes in chlorophylls suggests that (1) the phytol in chlorophylls reflects strong D- and (13)C-depletions due to the isotopic fractionations during the methylerythritol phosphate pathway followed by hydrogenation, and (2) the chlorophyllides reflect D- and (13)C-enrichments in tricarboxylic acid cycle. On the other hand, chlorophylls are slightly ( approximately 1.2 per thousand) depleted in (15)N relative to the bulk tissue, indicating that net isotopic fractionation of nitrogen during chlorophyll biosynthesis is small compared with those of hydrogen and carbon.


Asunto(s)
Isótopos de Carbono/metabolismo , Clorofila/biosíntesis , Hidrógeno/metabolismo , Magnoliopsida/metabolismo , Isótopos de Nitrógeno/metabolismo , Clorofila A , Clorofilidas/metabolismo , Modelos Químicos , Estructura Molecular , Fitol/metabolismo , Agua
6.
Environ Microbiol ; 7(7): 1009-16, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15946297

RESUMEN

Stable carbon and nitrogen isotopic compositions were determined for individual photosynthetic pigments isolated and purified from the saline meromictic Lake Kaiike, Japan, to investigate species-independent biogeochemical processes of photoautotrophs in the natural environment. In the anoxic monimolimnion and benthic microbial mats, the carbon isotopic compositions of BChls e and isorenieratene related to brown-coloured strains of green sulfur bacteria are substantially ( approximately 10 per thousand) depleted in (13)C relative to those found in the chemocline. In conjunction with 16S rDNA evidence reported previously, it strongly suggests that Pelodyctyon luteolum inhabited and photosynthesized in the anoxic monimolimnion and benthic microbial mats by using (13)C-depleted regenerated CO(2). By contrast, both Chl a and BChl a in the monimolimnion and microbial mats have similar isotopic compositions as they do in the chemocline, implying that the source organisms live only in the chemocline. In the chemocline, the nitrogen isotopic compositions of BChl e homologues ranges from -7.7 to-6.5 per thousand, whereas that of BChl a is -2.1 per thousand. These isotopic compositions suggest that green sulfur bacteria Chlorobium phaeovibrioides would conduct nitrogen fixation in the chemocline, whereas purple sulfur bacteria Halochromatium sp. and cyanobacteria Synechococcus sp. may assimilate nitrite.


Asunto(s)
Bacterias/metabolismo , Bacterioclorofilas/metabolismo , Isótopos de Carbono/metabolismo , Agua Dulce/microbiología , Isótopos de Nitrógeno/metabolismo , Cloruro de Sodio , Bacterias/clasificación , Chlorobium/metabolismo , Chromatiaceae/metabolismo , Ecosistema , Agua Dulce/química , Japón , Fotosíntesis , Synechococcus/metabolismo
7.
Environ Microbiol ; 5(11): 1103-10, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14641590

RESUMEN

We investigated the distribution of chloropigments in a small meromictic lake, Lake Kaiike, south-west Japan. In the water-column, concentrations of Chl a related to cyanobacteria, BChl a related to purple sulphur bacteria, and three types of BChl e homologues (BChls e1, e2 and e3) related to brown-coloured green sulphur bacteria, were maximal at the redox boundary. Below the redox boundary, absolute concentrations of Chl a and BChl a gradually decreased with depth, whereas BChls e remained rather constant. Suspended particulate matter (SPM) at the deeper region of the anoxic water-column was enriched in highly alkylated BChl e homologues compared with SPM at the redox boundary. The shift in the relative content of highly alkylated BChl e homologues beneath the boundary was associated with community related adaptation of brown-coloured green sulphur bacteria to changes in light quality/quantity, resulting from the optical absorption and reflectance of SPMs in the overlying water-column. Benthic microbial mats were characterized by high abundances of BChls e, in which highly alkylated homologues were substantially abundant. This suggests that the BChls e in the microbial mat may be derived from the low-light adapted brown-coloured green sulphur bacteria forming the bacterial mat.


Asunto(s)
Agua Dulce/química , Sedimentos Geológicos/química , Pigmentos Biológicos/análisis , Pigmentos Biológicos/aislamiento & purificación , Microbiología del Agua , Bacterioclorofila A/análisis , Bacterioclorofila A/aislamiento & purificación , Bacterioclorofilas/análisis , Bacterioclorofilas/aislamiento & purificación , Clorofila/análisis , Clorofila/aislamiento & purificación , Clorofila A , Cromatografía Líquida de Alta Presión , Sulfuro de Hidrógeno/análisis , Japón , Oxígeno/análisis , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA