Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 138(10): 573-597, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718356

RESUMEN

The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.


Asunto(s)
Angiotensina II , Cardiomegalia , Ratones Noqueados , Miocitos Cardíacos , Animales , Angiotensina II/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Masculino , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Remodelación Ventricular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Calmodulina , Proteínas del Tejido Nervioso
2.
Biochem J ; 479(3): 401-424, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147166

RESUMEN

The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.


Asunto(s)
Cardiomegalia/patología , Sistema de Señalización de MAP Quinasas/fisiología , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas B-raf/fisiología , Animales , Carbamatos/farmacología , Carbamatos/toxicidad , Cardiomegalia/metabolismo , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Dimerización , Técnicas de Sustitución del Gen , Insuficiencia Cardíaca/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Mutación Puntual , Conformación Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/biosíntesis , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Sulfonamidas/toxicidad
3.
Clin Sci (Lond) ; 136(22): 1661-1681, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36331065

RESUMEN

Cardiac hypertrophy is necessary for the heart to accommodate an increase in workload. Physiological, compensated hypertrophy (e.g. with exercise) is reversible and largely due to cardiomyocyte hypertrophy. Pathological hypertrophy (e.g. with hypertension) is associated with additional features including increased fibrosis and can lead to heart failure. RAF kinases (ARAF/BRAF/RAF1) integrate signals into the extracellular signal-regulated kinase 1/2 cascade, a pathway implicated in cardiac hypertrophy, and activation of BRAF in cardiomyocytes promotes compensated hypertrophy. Here, we used mice with tamoxifen-inducible cardiomyocyte-specific BRAF knockout (CM-BRAFKO) to assess the role of BRAF in hypertension-associated cardiac hypertrophy induced by angiotensin II (AngII; 0.8 mg/kg/d, 7 d) and physiological hypertrophy induced by phenylephrine (40 mg/kg/d, 7 d). Cardiac dimensions/functions were measured by echocardiography with histological assessment of cellular changes. AngII promoted cardiomyocyte hypertrophy and increased fibrosis within the myocardium (interstitial) and around the arterioles (perivascular) in male mice; cardiomyocyte hypertrophy and interstitial (but not perivascular) fibrosis were inhibited in mice with CM-BRAFKO. Phenylephrine had a limited effect on fibrosis but promoted cardiomyocyte hypertrophy and increased contractility in male mice; cardiomyocyte hypertrophy was unaffected in mice with CM-BRAFKO, but the increase in contractility was suppressed and fibrosis increased. Phenylephrine induced a modest hypertrophic response in female mice and, in contrast with the males, tamoxifen-induced loss of cardiomyocyte BRAF reduced cardiomyocyte size, had no effect on fibrosis and increased contractility. The data identify BRAF as a key signalling intermediate in both physiological and pathological hypertrophy in male mice, and highlight the need for independent assessment of gene function in females.


Asunto(s)
Hipertensión , Miocitos Cardíacos , Femenino , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas B-raf/genética , Fenilefrina , Tamoxifeno/farmacología , Cardiomegalia/genética , Fibrosis
4.
Biochem J ; 478(11): 2059-2079, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34002209

RESUMEN

Insulin and insulin-like growth factor stimulate protein synthesis and cardioprotection in the heart, acting through their receptors (INSRs, IGF1Rs) and signalling via protein kinase B (PKB, also known as Akt). Protein synthesis is increased in hearts perfused at alkaline pHo to the same extent as with insulin. Moreover, α1-adrenergic receptor (α1-AR) agonists (e.g. phenylephrine) increase protein synthesis in cardiomyocytes, activating PKB/Akt. In both cases, the mechanisms are not understood. Our aim was to determine if insulin receptor-related receptors (INSRRs, activated in kidney by alkaline pH) may account for the effects of alkaline pHo on cardiac protein synthesis, and establish if α1-ARs signal through the insulin receptor family. Alkaline pHo activated PKB/Akt signalling to the same degree as insulin in perfused adult male rat hearts. INSRRs were expressed in rat hearts and, by immunoblotting for phosphorylation (activation) of INSRRs/INSRs/IGF1Rs, we established that INSRRs, together with INSRs/IGF1Rs, are activated by alkaline pHo. The INSRR/INSR/IGF1R kinase inhibitor, linsitinib, prevented PKB/Akt activation by alkaline pHo, indicating that INSRRs/INSRs/IGF1Rs are required. Activation of PKB/Akt in cardiomyocytes by α1-AR agonists was also inhibited by linsitinib. Furthermore, linsitinib inhibited cardiomyocyte hypertrophy induced by α1-ARs in cultured cells, reduced the initial cardiac adaptation (24 h) to phenylephrine in vivo (assessed by echocardiography) and increased cardiac fibrosis over 4 days. We conclude that INSRRs are expressed in the heart and, together with INSRs/IGF1Rs, the insulin receptor family provide a potent system for promoting protein synthesis and cardioprotection. Moreover, this system is required for adaptive hypertrophy induced by α1-ARs.


Asunto(s)
Álcalis/farmacología , Fibrosis/patología , Hipertrofia/patología , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animales , Animales Recién Nacidos , Femenino , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hipertrofia/inducido químicamente , Hipertrofia/metabolismo , Imidazoles/farmacología , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Pirazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/genética , Receptores Adrenérgicos alfa 1/genética
5.
Biochem J ; 478(11): 2121-2143, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34032269

RESUMEN

The Ser/Thr kinase MAP4K4, like other GCKIV kinases, has N-terminal kinase and C-terminal citron homology (CNH) domains. MAP4K4 can activate c-Jun N-terminal kinases (JNKs), and studies in the heart suggest it links oxidative stress to JNKs and heart failure. In other systems, MAP4K4 is regulated in striatin-interacting phosphatase and kinase (STRIPAK) complexes, in which one of three striatins tethers PP2A adjacent to a kinase to keep it dephosphorylated and inactive. Our aim was to understand how MAP4K4 is regulated in cardiomyocytes. The rat MAP4K4 gene was not properly defined. We identified the first coding exon of the rat gene using 5'-RACE, we cloned the full-length sequence and confirmed alternative-splicing of MAP4K4 in rat cardiomyocytes. We identified an additional α-helix C-terminal to the kinase domain important for kinase activity. In further studies, FLAG-MAP4K4 was expressed in HEK293 cells or cardiomyocytes. The Ser/Thr protein phosphatase inhibitor calyculin A (CalA) induced MAP4K4 hyperphosphorylation, with phosphorylation of the activation loop and extensive phosphorylation of the linker between the kinase and CNH domains. This required kinase activity. MAP4K4 associated with myosin in untreated cardiomyocytes, and this was lost with CalA-treatment. FLAG-MAP4K4 associated with all three striatins in cardiomyocytes, indicative of regulation within STRIPAK complexes and consistent with activation by CalA. Computational analysis suggested the interaction was direct and mediated via coiled-coil domains. Surprisingly, FLAG-MAP4K4 inhibited JNK activation by H2O2 in cardiomyocytes and increased myofibrillar organisation. Our data identify MAP4K4 as a STRIPAK-regulated kinase in cardiomyocytes, and suggest it regulates the cytoskeleton rather than activates JNKs.


Asunto(s)
Empalme Alternativo , Proteínas de Unión a Calmodulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/genética , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Fosforilación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Sprague-Dawley , Homología de Secuencia
6.
Clin Sci (Lond) ; 135(14): 1631-1647, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34296750

RESUMEN

Raf kinases signal via extracellular signal-regulated kinases 1/2 (ERK1/2) to drive cell division. Since activating mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) are highly oncogenic, BRAF inhibitors including dabrafenib have been developed for cancer. Inhibitors of ERK1/2 signalling used for cancer are cardiotoxic in some patients, raising the question of whether dabrafenib is cardiotoxic. In the heart, ERK1/2 signalling promotes not only cardiomyocyte hypertrophy and is cardioprotective but also promotes fibrosis. Our hypothesis is that ERK1/2 signalling is not required in a non-stressed heart but is required for cardiac remodelling. Thus, dabrafenib may affect the heart in the context of, for example, hypertension. In experiments with cardiomyocytes, cardiac fibroblasts and perfused rat hearts, dabrafenib inhibited ERK1/2 signalling. We assessed the effects of dabrafenib (3 mg/kg/d) on male C57BL/6J mouse hearts in vivo. Dabrafenib alone had no overt effects on cardiac function/dimensions (assessed by echocardiography) or cardiac architecture. In mice treated with 0.8 mg/kg/d angiotensin II (AngII) to induce hypertension, dabrafenib inhibited ERK1/2 signalling and suppressed cardiac hypertrophy in both acute (up to 7 d) and chronic (28 d) settings, preserving ejection fraction. At the cellular level, dabrafenib inhibited AngII-induced cardiomyocyte hypertrophy, reduced expression of hypertrophic gene markers and almost completely eliminated the increase in cardiac fibrosis both in interstitial and perivascular regions. Dabrafenib is not overtly cardiotoxic. Moreover, it inhibits maladaptive hypertrophy resulting from AngII-induced hypertension. Thus, Raf is a potential therapeutic target for hypertensive heart disease and drugs such as dabrafenib, developed for cancer, may be used for this purpose.


Asunto(s)
Antineoplásicos/farmacología , Fibrosis/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Imidazoles/farmacología , Oximas/farmacología , Animales , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
7.
J Mol Cell Cardiol ; 129: 118-129, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771309

RESUMEN

Reactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of H2O2 to cardiomyocytes. High concentrations rapidly reduced intracellular ATP and inhibited protein synthesis. This was associated with activation of AMPK which phosphorylated and inhibited Raptor, a crucial component of mTOR complex-1 that regulates protein synthesis. Inhibition of protein synthesis by high concentrations of H2O2 prevents synthesis of immediate early gene products required for downstream gene expression, and such mRNAs (many encoding proteins required to deal with oxidant stress) were only induced by lower concentrations. Lower concentrations of H2O2 promoted mTOR phosphorylation, associated with differential recruitment of some mRNAs to the polysomes for translation. Some of the upregulated genes induced by low H2O2 levels are cytoprotective. We identified p21Cip1/WAF1 as one such protein, and preventing its upregulation enhanced the rate of cardiomyocyte apoptosis. The data support the concept of a "redox rheostat" in which different degrees of ROS influence cell energetics and intracellular signalling pathways to regulate mRNA and protein expression. This sliding scale determines cell fate, modulating survival vs death.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Regulación de la Expresión Génica , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citoprotección/efectos de los fármacos , Doxorrubicina/farmacología , Activación Enzimática/efectos de los fármacos , Genes Inmediatos-Precoces , Peróxido de Hidrógeno/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
8.
Biochem J ; 454(1): 13-30, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23889253

RESUMEN

The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly cerebral cavernous malformations.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Quinasas del Centro Germinal , Humanos , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética
9.
Biochem J ; 450(2): 351-63, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23215897

RESUMEN

ERK1/2 (extracellular-signal-regulated kinase 1/2) and their substrates RSKs (p90 ribosomal S6 kinases) phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. In the present study we investigated the role of RSKs in the transcriptomic responses to the G(q)-protein-coupled receptor agonists endothelin-1, phenylephrine (a generic α(1)-adrenergic receptor agonist) and A61603 (α(1A)-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2-3 min of stimulation (endothelin-1>A61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased the nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of the 213 RNAs up-regulated after 1 h, 51% required RSKs for their up-regulation, whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical with, endothelin-1. As with endothelin-1, PD184352 inhibited the up-regulation of most phenylephrine-responsive transcripts, but the greater variation in the effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α(1A)-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, up-regulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to G(q)-protein-coupled receptor stimulation.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Receptor de Endotelina A/agonistas , Receptores Adrenérgicos alfa 1/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Agonistas alfa-Adrenérgicos/metabolismo , Animales , Benzamidas/farmacología , Núcleo Celular/metabolismo , Masculino , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/citología , ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Endotelina A/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal
10.
Cytokine ; 61(2): 340-4, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23219998

RESUMEN

In the heart, inflammatory cytokines including interleukin (IL) 1ß are implicated in regulating adaptive and maladaptive changes, whereas IL33 negatively regulates cardiomyocyte hypertrophy and promotes cardioprotection. These agonists signal through a common co-receptor but, in cardiomyocytes, IL1ß more potently activates mitogen-activated protein kinases and NFκB, pathways that regulate gene expression. We compared the effects of external application of IL1ß and IL33 on the cardiomyocyte transcriptome. Neonatal rat cardiomyocytes were exposed to IL1ß or IL33 (0.5, 1 or 2h). Transcriptomic profiles were determined using Affymetrix rat genome 230 2.0 microarrays and data were validated by quantitative PCR. IL1ß induced significant changes in more RNAs than IL33 and, generally, to a greater degree. It also had a significantly greater effect in downregulating mRNAs and in regulating mRNAs associated with selected pathways. IL33 had a greater effect on a small, select group of specific transcripts. Thus, differences in intensity of intracellular signals can deliver qualitatively different responses. Quantitatively different responses in production of receptor agonists and transcription factors may contribute to qualitative differences at later times resulting in different phenotypic cellular responses.


Asunto(s)
Interleucina-1beta/farmacología , Interleucinas/farmacología , Miocitos Cardíacos/metabolismo , Transcriptoma/genética , Animales , Animales Recién Nacidos , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-33 , Miocitos Cardíacos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transcriptoma/efectos de los fármacos
11.
Biochem J ; 444(2): 343-55, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22390138

RESUMEN

Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including Atf3 (activating transcription factor 3), Egr1 (early growth response 1) and Ptgs2 (prostaglandin-endoperoxide synthase 2) are rapidly and transiently up-regulated by endothelin-1 in cardiomyocytes. Atf3 regulates the expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. The expression of 23 mRNAs (including Egr1 and Ptgs2) was enhanced and the expression of 25 mRNAs was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on up-regulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3-Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from the dysregulation of target genes. The results of the present study therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.


Asunto(s)
Factor de Transcripción Activador 3/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Endotelina-1/fisiología , Retroalimentación Fisiológica/fisiología , Marcación de Gen , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transcriptoma/genética , Factor de Transcripción Activador 3/deficiencia , Factor de Transcripción Activador 3/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Ciclooxigenasa 2/biosíntesis , Proteína 1 de la Respuesta de Crecimiento Precoz/antagonistas & inhibidores , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Retroalimentación Fisiológica/efectos de los fármacos , Marcación de Gen/métodos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/genética
12.
Biochem J ; 442(3): 595-610, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22229648

RESUMEN

The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr(178)), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative 'non-canonical' pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr(178)) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr(328)) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr(178)) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr(328)) phosphorylation. Interestingly, MST3(Thr(328)) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr(178)/Thr(328)) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr(328)) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Humanos , Mamíferos , Datos de Secuencia Molecular , Células Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Treonina/genética
13.
Circulation ; 123(5): 504-14, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262993

RESUMEN

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.


Asunto(s)
Factor 9 de Crecimiento de Fibroblastos/farmacología , Insuficiencia Cardíaca/prevención & control , Infarto del Miocardio/complicaciones , Animales , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Factor 9 de Crecimiento de Fibroblastos/administración & dosificación , Factor 9 de Crecimiento de Fibroblastos/genética , Expresión Génica/efectos de los fármacos , Corazón , Insuficiencia Cardíaca/mortalidad , Hipertrofia Ventricular Izquierda/inducido químicamente , Ratones , Ratones Transgénicos , Neovascularización Patológica/inducido químicamente , Fosforilación , Ratas , Tetraciclina/farmacología
14.
Biosci Rep ; 42(7)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35766350

RESUMEN

Insulin was discovered over 100 years ago. Whilst the first half century defined many of the physiological effects of insulin, the second emphasised the mechanisms by which it elicits these effects, implicating a vast array of G proteins and their regulators, lipid and protein kinases and counteracting phosphatases, and more. Potential growth-promoting and protective effects of insulin on the heart emerged from studies of carbohydrate metabolism in the 1960s, but the insulin receptors (and the related receptor for insulin-like growth factors 1 and 2) were not defined until the 1980s. A related third receptor, the insulin receptor-related receptor remained an orphan receptor for many years until it was identified as an alkali-sensor. The mechanisms by which these receptors and the plethora of downstream signalling molecules confer cardioprotection remain elusive. Here, we review important aspects of the effects of the three insulin receptor family members in the heart. Metabolic studies are set in the context of what is now known of insulin receptor family signalling and the role of protein kinase B (PKB or Akt), and the relationship between this and cardiomyocyte survival versus death is discussed. PKB/Akt phosphorylates numerous substrates with potential for cardioprotection in the contractile cardiomyocytes and cardiac non-myocytes. Our overall conclusion is that the effects of insulin on glucose metabolism that were initially identified remain highly pertinent in managing cardiomyocyte energetics and preservation of function. This alone provides a high level of cardioprotection in the face of pathophysiological stressors such as ischaemia and myocardial infarction.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Receptor de Insulina , Insulina/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
15.
J Biol Chem ; 284(40): 27195-210, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19638633

RESUMEN

The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Homología de Secuencia de Aminoácido , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Caspasa 3/metabolismo , Humanos , Intrones/genética , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Elementos de Respuesta , Factor de Transcripción AP-1/genética , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
16.
BMC Genomics ; 11: 343, 2010 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-20509958

RESUMEN

BACKGROUND: Changes in cellular phenotype result from underlying changes in mRNA transcription and translation. Endothelin-1 stimulates cardiomyocyte hypertrophy with associated changes in mRNA/protein expression and an increase in the rate of protein synthesis. Insulin also increases the rate of translation but does not promote overt cardiomyocyte hypertrophy. One mechanism of translational regulation is through 5' terminal oligopyrimidine tracts (TOPs) that, in response to growth stimuli, promote mRNA recruitment to polysomes for increased translation. TOP mRNAs include those encoding ribosomal proteins, but the full panoply remains to be established. Here, we used microarrays to compare the effects of endothelin-1 and insulin on the global transcriptome of neonatal rat cardiomyocytes, and on mRNA recruitment to polysomes (i.e. the translatome). RESULTS: Globally, endothelin-1 and insulin (1 h) promoted >1.5-fold significant (false discovery rate < 0.05) changes in expression of 341 and 38 RNAs, respectively. For these transcripts with this level of change there was little evidence of translational regulation. However, 1336 and 712 RNAs had >1.25-fold significant changes in expression in total and/or polysomal RNA induced by endothelin-1 or insulin, respectively, of which approximately 35% of endothelin-1-responsive and approximately 56% of insulin-responsive transcripts were translationally regulated. Of mRNAs for established proteins recruited to polysomes in response to insulin, 49 were known TOP mRNAs with a further 15 probable/possible TOP mRNAs, but 49 had no identifiable TOP sequences or other consistent features in the 5' untranslated region. CONCLUSIONS: Endothelin-1, rather than insulin, substantially affects global transcript expression to promote cardiomyocyte hypertrophy. Effects on RNA recruitment to polysomes are subtle, with differential effects of endothelin-1 and insulin on specific transcripts. Furthermore, although insulin promotes recruitment of TOP mRNAs to cardiomyocyte polysomes, not all recruited mRNAs are TOP mRNAs.


Asunto(s)
Endotelina-1/farmacología , Perfilación de la Expresión Génica , Insulina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genética , Regiones no Traducidas 5'/genética , Animales , Secuencia de Bases , Biología Computacional , Ratones , Datos de Secuencia Molecular , Polirribosomas/efectos de los fármacos , Polirribosomas/genética , Polirribosomas/metabolismo , ARN Mensajero/genética , Ratas , Transducción de Señal/efectos de los fármacos
17.
Hypertension ; 76(4): 1208-1218, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32903101

RESUMEN

Systemic hypertension increases cardiac workload causing cardiomyocyte hypertrophy and increased cardiac fibrosis. An underlying feature is increased production of reactive oxygen species. Redox-sensitive ASK1 (apoptosis signal-regulating kinase 1) activates stress-regulated protein kinases (p38-MAPK [mitogen-activated protein kinases] and JNKs [c-Jun N-terminal kinases]) and promotes fibrosis in various tissues. Here, we determined the specificity of ASK1 signaling in the heart, with the hypothesis that ASK1 inhibitors may be used to manage fibrosis in hypertensive heart disease. Using immunoblotting, we established that moderate levels of H2O2 activate ASK1 in neonatal rat cardiomyocytes and perfused rat hearts. ASK1 was activated during ischemia in adult rat hearts, but not on reperfusion, consistent with activation by moderate (not high) reactive oxygen species levels. In contrast, IL (interleukin)-1ß activated an alternative kinase, TAK1 (transforming growth factor-activated kinase 1). ASK1 was not activated by IL1ß in cardiomyocytes and activation in perfused hearts was due to increased reactive oxygen species. Selonsertib (ASK1 inhibitor) prevented activation of p38-MAPKs (but not JNKs) by oxidative stresses in cultured cardiomyocytes and perfused hearts. In vivo (C57Bl/6J mice with osmotic minipumps for drug delivery), selonsertib (4 mg/[kg·d]) alone did not affect cardiac function/dimensions (assessed by echocardiography). However, it suppressed hypertension-induced cardiac hypertrophy resulting from angiotensin II (0.8 mg/[kg·d], 7d), with inhibition of Nppa/Nppb mRNA upregulation, reduced cardiomyocyte hypertrophy and, notably, significant reductions in interstitial and perivascular fibrosis. Our data identify a specific reactive oxygen species→ASK1→p38-MAPK pathway in the heart and establish that ASK1 inhibitors protect the heart from hypertension-induced cardiac remodeling. Thus, targeting the ASK1→p38-MAPK nexus has potential therapeutic viability as a treatment for hypertensive heart disease.


Asunto(s)
Hipertensión/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Miocardio/metabolismo , Remodelación Ventricular/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Benzamidas/farmacología , Corazón/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Imidazoles/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Remodelación Ventricular/efectos de los fármacos
18.
J Mol Cell Cardiol ; 46(2): 118-29, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19071133

RESUMEN

Murine transgenesis using cardioselective promoters has become increasingly common in studies of cardiac hypertrophy and heart failure, with expression mediated by pronuclear microinjection being the commonest format. Without wishing to decry their usefulness, in our view, such studies are not necessarily as unambiguous as sometimes portrayed and clarity is not always their consequence. We describe broadly the types of approach undertaken in the heart and point out some of the drawbacks. We provide three arbitrarily-chosen examples where, in spite of a number of often-independent studies, no consensus has yet been achieved. These include glycogen synthase kinase 3, the extracellular signal-regulated kinase pathway and the ryanodine receptor 2. We believe that the transgenic approach should not be viewed in an empyreal light and, depending on the questions asked, we suggest that other experimental systems provide equal (or even more) valuable outcomes.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Animales , Cardiomegalia/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Insuficiencia Cardíaca/genética , Ratones , Ratones Transgénicos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
19.
Biochim Biophys Acta ; 1783(6): 1229-36, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18406357

RESUMEN

Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.


Asunto(s)
Endotelina-1/farmacología , Regulación de la Expresión Génica , Interleucina-1beta/farmacología , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Peróxido de Hidrógeno/farmacología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Miocitos Cardíacos/citología , Oxidantes/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transcripción Genética
20.
Cell Signal ; 20(1): 206-18, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17993264

RESUMEN

Inhibition of glycogen synthase kinase 3beta (GSK3beta) as a consequence of its phosphorylation by protein kinase B/Akt (PKB/Akt) has been implicated in cardiac myocyte hypertrophy in response to endothelin-1 or phenylephrine. We examined the regulation of GSK3alpha (which we show to constitute a significant proportion of the myocyte GSK3 pool) and GSK3beta in cardiac myocytes. Although endothelin increases phosphorylation of GSK3 and decreases its activity, the response is less than that induced by insulin (which does not promote cardiac myocyte hypertrophy). GSK3 phosphorylation induced by endothelin requires signalling through the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and not the PKB/Akt pathway, whereas the reverse is true for insulin. Cardiac myocyte hypertrophy involves changes in morphology, and in gene and protein expression. The potent GSK3 inhibitor 1-azakenpaullone increases myocyte area as a consequence of increased cell length whereas phenylephrine increases both length and width. Azakenpaullone or insulin promotes AP1 transcription factor binding to an AP1 consensus oligonucleotide, but this was significantly less than that induced by endothelin and derived principally from increased binding of JunB protein, the expression of which was increased. Azakenpaullone promotes significant changes in gene expression (assessed by Affymetrix microarrays), but the overall response is less than with endothelin and there is little overlap between the genes identified. Thus, although GSK3 may contribute to cardiac myocyte hypertrophy in some respects (and presumably plays an important role in myocyte metabolism), it does not appear to contribute as significantly to the response induced by endothelin as has been maintained.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Miocitos Cardíacos/enzimología , Animales , Benzazepinas/farmacología , Células Cultivadas , Endotelina-1/fisiología , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Indoles/farmacología , Insulina/farmacología , Miocitos Cardíacos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA