Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 165(7): 1749-1761, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315482

RESUMEN

Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.


Asunto(s)
Mantenimiento del Peso Corporal , Hipotálamo/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/metabolismo , Sinapsis , Proteína Relacionada con Agouti/metabolismo , Animales , Homeostasis , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Transgénicos
2.
Nucleic Acids Res ; 48(8): 4344-4356, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32187363

RESUMEN

The genome is the blueprint for an organism. Interrogating the genome, especially locating critical cis-regulatory elements, requires deletion analysis. This is conventionally performed using synthetic constructs, making it cumbersome and non-physiological. Thus, we created Cas9-mediated Arrayed Mutagenesis of Individual Offspring (CAMIO) to achieve comprehensive analysis of a targeted region of native DNA. CAMIO utilizes CRISPR that is spatially restricted to generate independent deletions in the intact Drosophila genome. Controlled by recombination, a single guide RNA is stochastically chosen from a set targeting a specific DNA region. Combining two sets increases variability, leading to either indels at 1-2 target sites or inter-target deletions. Cas9 restriction to male germ cells elicits autonomous double-strand-break repair, consequently creating offspring with diverse mutations. Thus, from a single population cross, we can obtain a deletion matrix covering a large expanse of DNA at both coarse and fine resolution. We demonstrate the ease and power of CAMIO by mapping 5'UTR sequences crucial for chinmo's post-transcriptional regulation.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila/genética , Edición Génica , Mutagénesis , Regiones no Traducidas 5' , Animales , Animales Modificados Genéticamente , Proteína 9 Asociada a CRISPR , Proteínas de Drosophila/genética , Genoma de los Insectos , Mutación INDEL , Masculino , Proteínas del Tejido Nervioso/genética , Espermatozoides/metabolismo
3.
PLoS Genet ; 14(7): e1007552, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30063705

RESUMEN

In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular/genética , Células Ciliadas Auditivas/fisiología , Proteínas con Homeodominio LIM/metabolismo , Regeneración/genética , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Perfilación de la Expresión Génica/métodos , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética
4.
Development ; 143(3): 411-21, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26700685

RESUMEN

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.


Asunto(s)
Linaje de la Célula/genética , Drosophila melanogaster/genética , Marcación de Gen , Neuronas/citología , Robótica , Transcriptoma/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Regulación del Desarrollo de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(31): 11515-20, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049382

RESUMEN

Asthma is a common debilitating inflammatory lung disease affecting over 200 million people worldwide. Here, we investigated neurogenic components involved in asthmatic-like attacks using the ovalbumin-sensitized murine model of the disease, and identified a specific population of neurons that are required for airway hyperreactivity. We show that ablating or genetically silencing these neurons abolished the hyperreactive broncho-constrictions, even in the presence of a fully developed lung inflammatory immune response. These neurons are found in the vagal ganglia and are characterized by the expression of the transient receptor potential vanilloid 1 (TRPV1) ion channel. However, the TRPV1 channel itself is not required for the asthmatic-like hyperreactive airway response. We also demonstrate that optogenetic stimulation of this population of TRP-expressing cells with channelrhodopsin dramatically exacerbates airway hyperreactivity of inflamed airways. Notably, these cells express the sphingosine-1-phosphate receptor 3 (S1PR3), and stimulation with a S1PR3 agonist efficiently induced broncho-constrictions, even in the absence of ovalbumin sensitization and inflammation. Our results show that the airway hyperreactivity phenotype can be physiologically dissociated from the immune component, and provide a platform for devising therapeutic approaches to asthma that target these pathways separately.


Asunto(s)
Asma/patología , Asma/fisiopatología , Hiperreactividad Bronquial/patología , Hiperreactividad Bronquial/fisiopatología , Neumonía/patología , Sistema Respiratorio/inervación , Células Receptoras Sensoriales/patología , Animales , Asma/complicaciones , Hiperreactividad Bronquial/complicaciones , Eliminación de Gen , Silenciador del Gen , Ratones , Ratones Endogámicos C57BL , Neumonía/complicaciones , Neumonía/fisiopatología , Receptores de Lisoesfingolípidos/metabolismo , Sistema Respiratorio/patología , Sistema Respiratorio/fisiopatología , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Nervio Vago/metabolismo , Nervio Vago/patología
6.
Proc Natl Acad Sci U S A ; 111(14): 5397-402, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706869

RESUMEN

Spatial patterns of gene expression in the vertebrate brain are not independent, as pairs of genes can exhibit complex patterns of coexpression. Two genes may be similarly expressed in one region, but differentially expressed in other regions. These correlations have been studied quantitatively, particularly for the Allen Atlas of the adult mouse brain, but their biological meaning remains obscure. We propose a simple model of the coexpression patterns in terms of spatial distributions of underlying cell types and establish its plausibility using independently measured cell-type-specific transcriptomes. The model allows us to predict the spatial distribution of cell types in the mouse brain.


Asunto(s)
Encéfalo/metabolismo , Expresión Génica , Modelos Biológicos , Animales , Ratones
7.
Genes Dev ; 23(18): 2179-91, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19696147

RESUMEN

Little is known about the contribution of translational control to circadian rhythms. To address this issue and in particular translational control by microRNAs (miRNAs), we knocked down the miRNA biogenesis pathway in Drosophila circadian tissues. In combination with an increase in circadian-mediated transcription, this severely affected Drosophila behavioral rhythms, indicating that miRNAs function in circadian timekeeping. To identify miRNA-mRNA pairs important for this regulation, immunoprecipitation of AGO1 followed by microarray analysis identified mRNAs under miRNA-mediated control. They included three core clock mRNAs-clock (clk), vrille (vri), and clockworkorange (cwo). To identify miRNAs involved in circadian timekeeping, we exploited circadian cell-specific inhibition of the miRNA biogenesis pathway followed by tiling array analysis. This approach identified miRNAs expressed in fly head circadian tissue. Behavioral and molecular experiments show that one of these miRNAs, the developmental regulator bantam, has a role in the core circadian pacemaker. S2 cell biochemical experiments indicate that bantam regulates the translation of clk through an association with three target sites located within the clk 3' untranslated region (UTR). Moreover, clk transgenes harboring mutated bantam sites in their 3' UTRs rescue rhythms of clk mutant flies much less well than wild-type CLK transgenes.


Asunto(s)
Ritmo Circadiano/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Regiones no Traducidas 3'/metabolismo , Animales , Conducta Animal/fisiología , Sitios de Unión , Proteínas CLOCK , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Evolución Molecular , Expresión Génica , Cabeza/fisiología , Masculino , MicroARNs/biosíntesis , MicroARNs/genética , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Neurosci ; 34(38): 12877-83, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232122

RESUMEN

Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome.


Asunto(s)
Regulación hacia Abajo/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Animales , Adhesión Celular/genética , Comunicación Celular/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Síndrome de Rett/genética
9.
RNA ; 15(4): 537-45, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223442

RESUMEN

Drosha is a type III RNase, which plays a critical role in miRNA biogenesis. Drosha and its double-stranded RNA-binding partner protein Pasha/DGCR8 likely recognize and cleave miRNA precursor RNAs or pri-miRNA hairpins cotranscriptionally. To identify RNAs processed by Drosha, we used tiling microarrays to examine transcripts after depletion of drosha mRNA with dsRNA in Drosophila Schneider S2 cells. This strategy identified 137 Drosha-regulated RNAs, including 11 putative pri-miRNAs comprising 15 annotated miRNAs. Most of the identified pri-miRNAs seem extremely large, >10 kb as revealed by both the Drosha knock-down strategy and by RNA PolII chromatin IP followed by Drosophila tiling microarrays. Surprisingly, more than a hundred additional RNAs not annotated as miRNAs are under Drosha control and are likely to be direct targets of Drosha action. This is because many of them encode annotated genes, and unlike bona fide pri-miRNAs, they are not affected by depletion of the miRNA processing factor, dicer-1. Moreover, application of the evofold analysis software indicates that at least 25 of the Drosha-regulated RNAs contain evolutionarily conserved hairpins similar to those recognized by the Drosha-Pasha/DGCR8 complex in pri-miRNAs. One of these hairpins is located in the 5' UTR of both pasha and mammalian DGCR8. These observations suggest that a negative feedback loop acting on pasha mRNA may regulate the miRNA-biogenesis pathway: i.e., excess Drosha cleaves pasha/DGCR8 primary transcripts and leads to a reduction in pasha/DGCR8 mRNA levels and Pasha/DGCR8 synthesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genoma de los Insectos , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Regiones no Traducidas 5' , Animales , Proteínas de Drosophila/química , Técnicas de Silenciamiento del Gen , Humanos , MicroARNs/genética , Complejos Multiproteicos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas de Unión al ARN/química , Ribonucleasa III/química
10.
Expert Rev Proteomics ; 8(5): 591-604, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21999830

RESUMEN

Single-cell analysis is gaining popularity in the field of mass spectrometry as a method for analyzing protein and peptide content in cells. The spatial resolution of MALDI mass spectrometry (MS) imaging is by a large extent limited by the laser focal diameter and the displacement of analytes during matrix deposition. Owing to recent advancements in both laser optics and matrix deposition methods, spatial resolution on the order of a single eukaryotic cell is now achievable by MALDI MS imaging. Provided adequate instrument sensitivity, a lateral resolution of approximately 10 µm is currently attainable with commercial instruments. As a result of these advances, MALDI MS imaging is poised to become a transformative clinical technology. In this article, the crucial steps needed to obtain single-cell resolution are discussed, as well as potential applications to disease research.


Asunto(s)
Biomarcadores/análisis , Proteínas/análisis , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Diagnóstico por Imagen , Humanos , Inmunohistoquímica/métodos , Pronóstico
11.
J Neurosci ; 29(21): 7040-52, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19474331

RESUMEN

Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are attributable to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. Although embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first 4 postnatal weeks and that these changes are correlated with primarily monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of two-pore K(+) leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells.


Asunto(s)
Potenciales de Acción/fisiología , Redes Reguladoras de Genes/fisiología , Interneuronas/fisiología , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Citometría de Flujo/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/efectos de los fármacos , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Interneuronas/clasificación , Interneuronas/efectos de los fármacos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Transgénicos , Análisis por Micromatrices/métodos , Técnicas de Placa-Clamp
12.
Nat Neurosci ; 9(1): 99-107, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16369481

RESUMEN

Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.


Asunto(s)
Expresión Génica/fisiología , Neuronas/clasificación , Neuronas/ultraestructura , Prosencéfalo/citología , Animales , Proteínas Bacterianas/genética , Química Encefálica/genética , Interpretación Estadística de Datos , Electrofisiología , Citometría de Flujo , Colorantes Fluorescentes , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Hibridación in Situ , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Prosencéfalo/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Elife ; 92020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913118

RESUMEN

Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.


Asunto(s)
Envejecimiento/genética , Perfilación de la Expresión Génica , Expresión Génica , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/citología , Transcriptoma , Animales , Encéfalo/metabolismo , Proteínas CELF/genética , Técnicas de Sustitución del Gen , Ratones , RNA-Seq , Ganglio Espiral de la Cóclea/embriología , Ganglio Espiral de la Cóclea/metabolismo
14.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255422

RESUMEN

Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.


Asunto(s)
Encéfalo/fisiología , Linaje de la Célula , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Encéfalo/citología , Drosophila melanogaster/genética , Larva , Neuronas/citología
15.
Elife ; 82019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31545163

RESUMEN

Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/ß' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células-Madre Neurales/fisiología , Neuronas/fisiología , Factores de Transcripción/metabolismo , Animales , Drosophila , Perfilación de la Expresión Génica
16.
Elife ; 82019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30977723

RESUMEN

Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases, we provide an extensive resource for further investigation of mouse neuronal cell types.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/citología , Perfilación de la Expresión Génica , Neuronas/fisiología , Animales , Ratones
17.
Trends Neurosci ; 29(6): 339-45, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16714064

RESUMEN

Neural circuits within the vertebrate brain are composed of highly diverse cell types. The exact extent of this diversity is a matter of continuing debate. For example, do cortical interneurons comprise a few, dozens or >100 distinct cell types? Recently, several groups have used microarrays to measure genome-wide gene expression profiles for specific neuronal cell types. These methods can offer an objective basis for neuronal classification. In this review, we argue that this approach should now be carried out more broadly and that it should be coupled to large-scale efforts to generate mouse driver lines in which tools for genetic manipulation, such as the Cre recombinase, are expressed in identified cell types within the brain. This would enable neuroscientists to begin to investigate more systematically the roles of specific genes in establishing particular cellular phenotypes, and also the roles of particular cell types within brain circuits. This review is part of the TINS special issue on The Neural Substrates of Cognition.


Asunto(s)
Encéfalo/citología , Genómica , Neuronas/clasificación , Neuronas/fisiología , Animales , Perfilación de la Expresión Génica , Humanos , Red Nerviosa/citología , Red Nerviosa/fisiología
18.
Curr Opin Neurobiol ; 16(5): 571-6, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16962313

RESUMEN

Distinct neuronal cell types acquire and maintain their identity by expressing different genes. Recently it has become feasible to measure this cell type specific expression by isolating and amplifying mRNA from small populations of fluorescently labeled neurons and probing this mRNA with microarrays. Prior to this, most neuronal gene expression studies used tissue homogenates or randomly selected single cells and were, therefore, not well suited to studying transcriptional differences between cell types. Microarray studies of purified cell types have enabled investigators to identify the transcriptional signatures of, for example, subtypes of pyramidal neurons and interneurons in the neocortex, modulatory dopaminergic and serotonergic neurons, and the striatal neurons that form the so-called 'direct' and 'indirect' pathways through the basal ganglia. These studies are opening up new approaches to understanding brain circuitry, plasticity and pathology and are refining the concept of the neuronal cell type.


Asunto(s)
Encéfalo/citología , Expresión Génica , Neuronas/citología , Neuronas/fisiología , Transcripción Genética , Animales , Encéfalo/fisiología , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Curr Biol ; 27(9): 1303-1313, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28434858

RESUMEN

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Esteroides/metabolismo , Animales , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factor de Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA