Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PeerJ ; 9: e11782, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322326

RESUMEN

BACKGROUND: Heat stress is considered one of the most important environmental factors influencing plant physiology, growth, development, and reproductive output. The occurrence and damage caused by heat stress will likely increase with global climate change. Thus, there is an urgent need to better understand the genetic basis of heat tolerance, especially in cool season plants. MATERIALS AND METHODS: In this study, we assessed the inheritance of heat tolerance in perennial ryegrass (Lolium perenne L. subspecies perenne) , a cool season grass, through a comparison of two parental cultivars with their offspring. We crossed plants of a heat tolerant cultivar (Kangaroo Valley) with plants of a heat sensitive cultivar (Norlea), to generate 72 F1 hybrid progeny arrays. Both parents and their progeny were then exposed to heat stress for 40 days, and their photosynthetic performance (Fv/Fm values) and leaf H2O2 content were measured. RESULTS: As expected, Kangaroo Valley had significantly higher Fv/Fm values and significantly lower H2O2 concentrations than Norlea. For the F1 progeny arrays, values of Fv/Fm decreased gradually with increasing exposure to heat stress, while the content of H2O 2 increased. The progeny had a wide distribution of Fv/Fm and H 2O2 values at 40 days of heat stress. Approximately 95% of the 72 F1 progeny arrays had Fv/Fm values that were equal to or intermediate to the values of the two parental cultivars and 68% of the progeny arrays had H2O2 concentrations equal to or intermediate to their two parents. CONCLUSION: Results of this study indicate considerable additive genetic variation for heat tolerance among the 72 progeny arrays generated from these crosses, and such diversity can be used to improve heat tolerance in perennial ryegrass cultivars. Our findings point to the benefits of combining physiological measurements within a genetic framework to assess the inheritance of heat tolerance, a complex plant response.

2.
New Phytol ; 185(3): 747-58, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19925556

RESUMEN

Investigation of responses of meristems to environmental conditions is important for understanding the mechanisms and consequences of plant phenotypic plasticity. Here, we examined how meristem plasticity to light and soil nutrients affected leaf growth and relative growth rate (RGR) in fast- and slow-growing Festuca grass species. Activity in shoot apical meristems was measured by leaf appearance rate, and that in leaf meristems by the duration and rate of cell production, which was further divided into single cell cycle time and the number of dividing cells. Light and soil nutrients affected activity in shoot apical meristems similarly. The high nutrient supply increased the number of dividing cells, which was responsible for enhancement of cell production rate; shaded conditions extended the duration of cell production. As a result, leaf length increased under high nutrient and shaded conditions. The RGR was correlated positively with the total meristem size of the shoot under a low nutrient supply, implying inhibition of RGR by cell production under nutrient-limited conditions. Fast-growing species were more plastic for cell production rate and specific leaf area (SLA) but less plastic for RGR than slow-growing species. This study demonstrates that meristem plasticity plays key roles in characterizing environmental responses of plant species.


Asunto(s)
Festuca/crecimiento & desarrollo , Festuca/efectos de la radiación , Luz , Meristema/crecimiento & desarrollo , Meristema/efectos de la radiación , Suelo , Análisis de Varianza , Festuca/citología , Tamaño de los Órganos/efectos de la radiación , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Carácter Cuantitativo Heredable , Especificidad de la Especie
3.
Science ; 351(6272): 457, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26823419

RESUMEN

Tredennick et al. criticize one of our statistical analyses and emphasize the low explanatory power of models relating productivity to diversity. These criticisms do not detract from our key findings, including evidence consistent with the unimodal constraint relationship predicted by the humped-back model and evidence of scale sensitivities in the form and strength of the relationship.


Asunto(s)
Biodiversidad , Pradera , Desarrollo de la Planta
4.
Environ Microbiol Rep ; 4(6): 648-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23760936

RESUMEN

Rice paddies are one of the most important sources of CH4 emission from the terrestrial ecosystem. A Free-air CO2 Enrichment (FACE) experiment, which included a soil warming treatment, was conducted in a rice paddy at Shizukuishi, Japan. In this study, the changes in CH4 emission from a rice paddy, caused by global climate change, were explored in relation to the structural changes that have occurred in the methanogenic archaeal communities found in the soil and roots. The composition of the archaeal community was examined by terminal restriction fragment length polymorphism (T-RFLP) using the 16S rRNA gene, while its abundance was measured by real-time PCR using the methyl coenzyme M reductase (mcrA) gene. The archaeal community in the roots showed considerable change, characterized by the dominance of hydrogenotrophic methanogens and a corresponding decrease in acetoclastic methanogens. Seasonal changes in CH4 flux were closely related to the changes in methanogen abundance in the roots. Elevated CO2 caused an increase in root mass, which increased the abundance of methanogens leading to a rise in CH4 emissions. However, soil warming stimulated CH4 emissions by increasing CH4 production per individual methanogen. These results demonstrated that climate warming stimulates CH4 emission in a rice paddy by altering the abundance and activity of methanogenic archaea in the roots.

5.
Ann Bot ; 96(5): 931-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16100224

RESUMEN

BACKGROUND AND AIMS: Growth and development of plant organs, including leaves, depend on cell division and expansion. Leaf size is increased by greater cell ploidy, but the mechanism of this effect is poorly understood. Therefore, in this study, the role of cell division and expansion in the increase of leaf size caused by polyploidy was examined by comparing various cell parameters of the mesophyll layer of developing leaves of diploid and autotetraploid cultivars of two grass species, Lolium perenne and L. multiflorum. METHODS: Three cultivars of each ploidy level of both species were grown under pot conditions in a controlled growth chamber, and leaf elongation rate and the cell length profile at the leaf base were measured on six plants in each cultivar. Cell parameters related to division and elongation activities were calculated by a kinematic method. KEY RESULTS: Tetraploid cultivars had faster leaf elongation rates than did diploid cultivars in both species, resulting in longer leaves, mainly due to their longer mature cells. Epidermal and mesophyll cells differed 20-fold in length, but were both greater in the tetraploid cultivars of both species. The increase in cell length of the tetraploid cultivars was caused by a faster cell elongation rate, not by a longer period of cell elongation. There were no significant differences between cell division parameters, such as cell production rate and cell cycle time, in the diploid and tetraploid cultivars. CONCLUSION: The results demonstrated clearly that polyploidy increases leaf size mainly by increasing the cell elongation rate, but not the duration of the period of elongation, and thus increases final cell size.


Asunto(s)
Lolium/citología , Lolium/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Ploidias , Tamaño Corporal , Tamaño de la Célula , Lolium/anatomía & histología , Lolium/clasificación , Hojas de la Planta/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA