Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nucleic Acids Res ; 52(15): 9174-9192, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38828770

RESUMEN

The Cajal body, a nuclear condensate, is crucial for ribonucleoprotein assembly, including small nuclear RNPs (snRNPs). While Coilin has been identified as an integral component of Cajal bodies, its exact function remains unclear. Moreover, no Coilin ortholog has been found in unicellular organisms to date. This study unveils Mug174 (Meiosis-upregulated gene 174) as the Coilin ortholog in the fission yeast Schizosaccharomyces pombe. Mug174 forms phase-separated condensates in vitro and is often associated with the nucleolus and the cleavage body in vivo. The generation of Mug174 foci relies on the trimethylguanosine (TMG) synthase Tgs1. Moreover, Mug174 interacts with Tgs1 and U snRNAs. Deletion of the mug174+ gene in S. pombe causes diverse pleiotropic phenotypes, encompassing defects in vegetative growth, meiosis, pre-mRNA splicing, TMG capping of U snRNAs, and chromosome segregation. In addition, we identified weak homology between Mug174 and human Coilin. Notably, human Coilin expressed in fission yeast colocalizes with Mug174. Critically, Mug174 is indispensable for the maintenance of and transition from cellular quiescence. These findings highlight the Coilin ortholog in fission yeast and suggest that the Cajal body is implicated in cellular quiescence, thereby preventing human diseases.


Asunto(s)
Cuerpos Enrollados , Proteínas Nucleares , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Cuerpos Enrollados/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Humanos , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Meiosis/genética , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Hidroliasas/metabolismo , Hidroliasas/genética , Núcleo Celular/metabolismo , Metiltransferasas
2.
Mol Cell ; 66(1): 50-62.e6, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28318821

RESUMEN

Heterochromatin can be epigenetically inherited in cis, leading to stable gene silencing. However, the mechanisms underlying heterochromatin inheritance remain unclear. Here, we identify Fft3, a fission yeast homolog of the mammalian SMARCAD1 SNF2 chromatin remodeler, as a factor uniquely required for heterochromatin inheritance, rather than for de novo assembly. Importantly, we find that Fft3 suppresses turnover of histones at heterochromatic loci to facilitate epigenetic transmission of heterochromatin in cycling cells. Moreover, Fft3 also precludes nucleosome turnover at several euchromatic loci to prevent R-loop formation, ensuring proper replication progression. Our analyses show that overexpression of Clr4/Suv39h, which is also required for efficient replication through these loci, suppresses phenotypes associated with the loss of Fft3. This work uncovers a conserved factor critical for epigenetic inheritance of heterochromatin and describes a mechanism in which suppression of nucleosome turnover prevents formation of structural barriers that impede replication at fragile regions in the genome.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , ADN de Hongos/biosíntesis , Epigénesis Genética , Herencia , Heterocromatina/metabolismo , Nucleosomas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/genética , Genotipo , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Nucleosomas/genética , Fenotipo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Tiempo
3.
Mol Cell ; 61(5): 747-759, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942678

RESUMEN

Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci. CCR4-NOT also assembles HOODs at retrotransposons and regulated genes containing cryptic introns. We find that CCR4-NOT facilitates HOOD assembly through its association with the conserved Pir2/ARS2 protein, and also maintains rDNA integrity and silencing by promoting heterochromatin formation. Our results reveal connections among Erh1, CCR4-NOT, Pir2/ARS2, and RNAi, which target heterochromatin to regulate gene expression and protect genome integrity.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Meiosis , Interferencia de ARN , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Proteínas Portadoras/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/genética , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Retroelementos , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética
4.
Nature ; 543(7643): 126-130, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199302

RESUMEN

Uniparental disomy (UPD), in which an individual contains a pair of homologous chromosomes originating from only one parent, is a frequent phenomenon that is linked to congenital disorders and various cancers. UPD is thought to result mostly from pre- or post-zygotic chromosome missegregation. However, the factors that drive UPD remain unknown. Here we use the fission yeast Schizosaccharomyces pombe as a model to investigate UPD, and show that defects in the RNA interference (RNAi) machinery or in the YTH domain-containing RNA elimination factor Mmi1 cause high levels of UPD in vegetative diploid cells. This phenomenon is not due to defects in heterochromatin assembly at centromeres. Notably, in cells lacking RNAi components or Mmi1, UPD is associated with the untimely expression of gametogenic genes. Deletion of the upregulated gene encoding the meiotic cohesin Rec8 or the cyclin Crs1 suppresses UPD in both RNAi and mmi1 mutants. Moreover, overexpression of Rec8 is sufficient to trigger UPD in wild-type cells. Rec8 expressed in vegetative cells localizes to chromosomal arms and to the centromere core, where it is required for localization of the cohesin subunit Psc3. The centromeric localization of Rec8 and Psc3 promotes UPD by uniquely affecting chromosome segregation, causing a reductional segregation of one homologue. Together, these findings establish the untimely vegetative expression of gametogenic genes as a causative factor of UPD, and provide a solid foundation for understanding this phenomenon, which is linked to diverse human diseases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Células Germinativas/metabolismo , Modelos Biológicos , Mutación , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Disomía Uniparental/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Ciclinas/deficiencia , Ciclinas/genética , Diploidia , Heterocromatina/metabolismo , Humanos , Meiosis/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Tiempo , Disomía Uniparental/patología , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982398

RESUMEN

Artificial intelligence (AI) technology for image recognition has the potential to identify cancer stem cells (CSCs) in cultures and tissues. CSCs play an important role in the development and relapse of tumors. Although the characteristics of CSCs have been extensively studied, their morphological features remain elusive. The attempt to obtain an AI model identifying CSCs in culture showed the importance of images from spatially and temporally grown cultures of CSCs for deep learning to improve accuracy, but was insufficient. This study aimed to identify a process that is significantly efficient in increasing the accuracy values of the AI model output for predicting CSCs from phase-contrast images. An AI model of conditional generative adversarial network (CGAN) image translation for CSC identification predicted CSCs with various accuracy levels, and convolutional neural network classification of CSC phase-contrast images showed variation in the images. The accuracy of the AI model of CGAN image translation was increased by the AI model built by deep learning of selected CSC images with high accuracy previously calculated by another AI model. The workflow of building an AI model based on CGAN image translation could be useful for the AI prediction of CSCs.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Inteligencia Artificial , Redes Neurales de la Computación , Neoplasias/diagnóstico por imagen , Células Madre Neoplásicas , Procesamiento de Imagen Asistido por Computador/métodos
6.
Yeast ; 38(11): 583-591, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34251689

RESUMEN

The polymerase chain reaction (PCR)-based gene targeting method, which can delete a specific gene or introduce tags, has been widely utilized to study gene function in fission yeast. One of the critical steps in this method is to design primers for amplifying DNA fragments of deletion or tagging modules and for checking the integration of those DNA fragments at designated loci. Although the primer design tool Pombe PCR Primer Program (PPPP) is available for Schizosaccharomyces pombe, there is no such publicly available application for the other three fission yeast species, S. cryophilus, S. japonicus, and S. octosporus. Likewise, no application enabling DNA/protein sequence retrieval for these three fission yeast species is available either. Therefore, access to such functionality would substantially assist in retrieval of gene sequences of interest and primer design in these fission yeast species. In this report, we describe two applications for fission yeast study: Yesprit and Yeaseq. Yesprit is a primer design tool for strain construction using the PCR-based method, and Yeaseq is a sequence viewer that can acquire the DNA/protein sequences of specific genes. Both tools can be run on the Windows, macOS, and Linux platforms. We believe that the Yesprit and Yeaseq will facilitate research using the four fission yeast species.


Asunto(s)
Schizosaccharomyces , Marcación de Gen , Reacción en Cadena de la Polimerasa , Schizosaccharomyces/genética
7.
Biochem Biophys Res Commun ; 486(1): 149-155, 2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28285135

RESUMEN

Mitochondrial membrane potential (ΔΨm) maintenance is physiologically critical in cells; its loss causes apoptotic signalling and cell death. Accumulating DNA mutations and unfolded proteins in stressed cells activate signalling pathways for cell death induction. Cancer cells often fail to die even in the presence of some death signalling proteins. Here, we report a short hairpin RNA (shRNA) with an artificial sequence, denoted Psi1 shRNA, which leads to ΔΨm loss in HCT116 cells. The Psi1 shRNA target gene was shown to encode transmembrane protein 117 (TMEM117). TMEM117 knockdown led to ΔΨm loss, increased reactive oxygen species levels, up-regulation of an endoplasmic reticulum (ER) stress sensor C/EBP homologous protein and active caspase-3 expression, and cell growth impairment, altering homeostasis towards cell death. TMEM117 levels were down-regulated in response to the ER stressor thapsigargin and decreased when cells showed ΔΨm loss. These results suggested that TMEM117 RNAi allowed apoptotic cell death. Therefore, TMEM117 probably mediates the signalling of ΔΨm loss in ER stress-mediated mitochondria-mediated cell death.


Asunto(s)
Apoptosis/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Interferencia de ARN , Transducción de Señal/genética , Western Blotting , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tapsigargina/farmacología
8.
EMBO J ; 30(6): 1027-39, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21317872

RESUMEN

Meiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully. Here we report that Red1, a novel protein, is essential for elimination of meiotic mRNAs from mitotic cells. A red1 deletion results in the accumulation of a large number of meiotic mRNAs in mitotic cells. Red1 interacts with Mmi1, Pla1, the canonical poly(A) polymerase, and Rrp6, a subunit of the nuclear exosome, and promotes the destabilization of DSR-containing mRNAs. Moreover, Red1 forms nuclear bodies in mitotic cells, and these foci are disassembled during meiosis. These results demonstrate that Red1 is involved in DSR-directed RNA decay to prevent ectopic expression of meiotic mRNAs in vegetative cells.


Asunto(s)
Proteínas Fúngicas/metabolismo , Meiosis , Mitosis , Estabilidad del ARN , ARN Mensajero/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Mapeo de Interacción de Proteínas
9.
Nucleic Acids Res ; 41(13): 6674-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658229

RESUMEN

Zinc-finger domains are found in many nucleic acid-binding proteins in both prokaryotes and eukaryotes. Proteins carrying zinc-finger domains have important roles in various nuclear transactions, including transcription, mRNA processing and mRNA export; however, for many individual zinc-finger proteins in eukaryotes, the exact function of the protein is not fully understood. Here, we report that Red5 is involved in efficient suppression of specific mRNAs during vegetative growth of Schizosaccharomyces pombe. Red5, which contains five C3H1-type zinc-finger domains, localizes to the nucleus where it forms discrete dots. A red5 point mutation, red5-2, results in the upregulation of specific meiotic mRNAs in vegetative mutant red5-2 cells; northern blot data indicated that these meiotic mRNAs in red5-2 cells have elongated poly(A) tails. RNA-fluorescence in situ hybridization results demonstrate that poly(A)(+) RNA species accumulate in the nucleolar regions of red5-deficient cells. Moreover, Red5 genetically interacts with several mRNA export factors. Unexpectedly, three components of the nuclear pore complex also suppress a specific set of meiotic mRNAs. These results indicate that Red5 function is important to meiotic mRNA degradation; they also suggest possible connections among selective mRNA decay, mRNA export and the nuclear pore complex in vegetative fission yeast.


Asunto(s)
Proteínas Portadoras/fisiología , Meiosis/genética , Proteínas de Complejo Poro Nuclear/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Nucléolo Celular/metabolismo , Núcleo Celular/química , Daño del ADN , Mitosis , Mutación , Feromonas , Proteínas de Unión a Poli(A)/genética , Estructura Terciaria de Proteína , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/análisis , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas/fisiología , Moduladores de Tubulina/farmacología , Dedos de Zinc
10.
Nat Genet ; 37(8): 809-19, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15976807

RESUMEN

The organization of eukaryotic genomes into distinct structural and functional domains is important for the regulation and transduction of genetic information. Here, we investigated heterochromatin and euchromatin profiles of the entire fission yeast genome and explored the role of RNA interference (RNAi) in genome organization. Histone H3 methylated at Lys4, which defines euchromatin, was not only distributed across most of the chromosomal landscape but was also present at the centromere core, the site of kinetochore assembly. In contrast, histone H3 methylated at Lys9 and its interacting protein Swi6/HP1, which define heterochromatin, coated extended domains associated with a variety of repeat elements and small islands corresponding to meiotic genes. Notably, RNAi components were distributed throughout all these heterochromatin domains, and their localization depended on Clr4/Suv39h histone methyltransferase. Sequencing of small interfering RNAs (siRNAs) associated with the RITS RNAi effector complex identified hot spots of siRNAs, which mapped to a diverse array of elements in these RNAi-heterochromatin domains. We found that Clr4/Suv39h predominantly silenced repeat elements whose derived transcripts, transcribed mainly by RNA polymerase II, serve as a source for siRNAs. Our analyses also uncover an important role for the RNAi machinery in maintaining genomic integrity.


Asunto(s)
Epigénesis Genética , Genoma Fúngico , Heterocromatina/fisiología , Interferencia de ARN , Schizosaccharomyces/genética , Metilación de ADN , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos
11.
Indian J Microbiol ; 54(3): 358-60, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891744

RESUMEN

Chromium(Cr) precipitate synthesized by Cr(VI)-reducing bacterium Flexivirga alba ST13(T) was examined using transmission electron microscopy (TEM) and the energy dispersive X-ray (EDX). The strain showed altered-morphology after exposing to Cr(VI) in minimal medium. The resultant precipitate included bacterial pellet and needle-like structure which was similar to the structure made from Cr(OH)3 precipitate. Cr was observed in bacterial cells using TEM-EDX. Bacteria with high electron density showed the precipitation of Ca in addition to Cr. The isolated strain would be useful to precipitate Cr from Cr(VI)-containing environment.

12.
Cell Insight ; 3(5): 100194, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39228923

RESUMEN

Decades have passed since the initial discovery of membrane-less nuclear compartments, commonly called nuclear bodies or nuclear condensates. These compartments have drawn attention to their unique characteristics and functions, especially after introducing "liquid-liquid phase separation" to this research field. While the majority of the studies on nuclear condensates have been conducted in multicellular organisms, recent genetic, biochemical, and cell biological analyses using the fission yeast Schizosaccharomyces pombe have yielded valuable insights into biomolecular condensates. This review article focuses on two 'classic' nuclear condensates and discusses how research using fission yeast has unveiled previously unknown functions of these known nuclear bodies.

13.
Methods Mol Biol ; 2777: 231-256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478348

RESUMEN

Knowledge regarding cancer stem cell (CSC) morphology is limited, and more extensive studies are therefore required. Image recognition technologies using artificial intelligence (AI) require no previous expertise in image annotation. Herein, we describe the construction of AI models that recognize the CSC morphology in cultures and tumor tissues. The visualization of the AI deep learning process enables insight to be obtained regarding unrecognized structures in an image.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Inteligencia Artificial , Células Madre Neoplásicas , Tecnología
14.
Nat Genet ; 36(11): 1174-80, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15475954

RESUMEN

RNA interference is a conserved mechanism by which double-stranded RNA is processed into short interfering RNAs (siRNAs) that can trigger both post-transcriptional and transcriptional gene silencing. In fission yeast, the RNA-induced initiation of transcriptional gene silencing (RITS) complex contains Dicer-generated siRNAs and is required for heterochromatic silencing. Here we show that RITS components, including Argonaute protein, bind to all known heterochromatic loci. At the mating-type region, RITS is recruited to the centromere-homologous repeat cenH in a Dicer-dependent manner, whereas the spreading of RITS across the entire 20-kb silenced domain, as well as its subsequent maintenance, requires heterochromatin machinery including Swi6 and occurs even in the absence of Dicer. Furthermore, our analyses suggest that RNA interference machinery operates in cis as a stable component of heterochromatic domains with RITS tethered to silenced loci by methylation of histone H3 at Lys9. This tethering promotes the processing of transcripts and generation of additional siRNAs for heterochromatin maintenance.


Asunto(s)
Silenciador del Gen , Interferencia de ARN , Schizosaccharomyces/genética , Animales , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos , Metilación de ADN , Proteínas Ligadas a GPI , Heterocromatina , Modelos Genéticos , ARN Interferente Pequeño , Receptores del Factor de Necrosis Tumoral/genética , Miembro 10c de Receptores del Factor de Necrosis Tumoral , Proteínas de Schizosaccharomyces pombe/genética , Receptores Señuelo del Factor de Necrosis Tumoral
15.
Nat Genet ; 36(1): 40-5, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14702039

RESUMEN

As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.


Asunto(s)
ADN Complementario , Análisis de Secuencia de ADN , Cromosomas Humanos 21-22 e Y , Cromosomas Humanos Par 20 , Biología Computacional , Humanos , Sistemas de Lectura Abierta , ARN Mensajero
16.
Cell Biochem Biophys ; 81(3): 459-468, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421592

RESUMEN

Stress response is an inherent mechanism in the endoplasmic reticulum (ER). The inducers of ER cause a specific cascade of reactions, leading to gene expression. Transmembrane protein 117 (TMEM117) is in the ER and plasma membrane. In our previous study, TMEM117 protein expression was found to be decreased by an ER stress inducer. However, the mechanism underlying this decrease in TMEM117 protein expression remains unclear. This study aimed to elucidate the mechanism underlying the decrease in TMEM117 protein expression during ER stress and identify the unfolded protein response (UPR) pathway related to decreased TMEM117 protein expression. We showed that the gene expression levels of TMEM117 were decreased by ER stress inducers and were regulated by PKR-like ER kinase (PERK), indicating that TMEM117 protein expression was regulated by the signaling pathway. Surprisingly, gene knockdown of activating transcription factor 4 (ATF4) downstream of PERK did not affect the gene expression of TMEM117. These results suggest that TMEM117 protein expression during ER stress is transcriptionally regulated by PERK but not by ATF4. TMEM117 has a potential to be a new therapeutic target against ER stress-related diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , eIF-2 Quinasa , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Expresión Génica
17.
Biofactors ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37983968

RESUMEN

Lipid droplets (LDs) are organelles that store excess lipids and provide fatty acids for energy production during starvation. LDs are also essential for cellular maintenance, but excessive accumulation of LDs triggers various cancers in addition to metabolic diseases such as diabetes. In this study, we aimed to develop a strategy to identify new genes that reduces accumulation of LDs in cancer cells using an RNA interference (RNAi) screening system employing artificial sequence-enriched shRNA libraries. Monitoring LDs by fluorescent activated cell sorting, the subsequently collected cumulative LDs cells, and shRNA sequence analysis identified a clone that potentially functioned to accumulate LDs. The clone showed no identical sequence to human Refseq. It showed very similar sequence to seven genes by allowing three mismatches. Among these genes, we identified the mediator complex subunit 6 (MED6) gene as a target of this shRNA. Silencing of MED6 led to an increase in LD accumulation and expression of the marker genes, PLIN2 and DGAT1, in fatty cells. MED6 is a member of the mediator complex that regulates RNA polymerase II transcription through transcription factor II. Some mediator complexes play important roles in both normal and pathophysiological transcription processes. These results suggest that MED6 transcriptionally regulates the genes involved in lipid metabolism and suppresses LD accumulation.

18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1171-1185, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36692829

RESUMEN

The anti-inflammatory drug celecoxib, the only inhibitor of cyclooxygenase-2 (COX-2) with anticancer activity, is used to treat rheumatoid arthritis and can cause endoplasmic reticulum (ER) stress by inhibiting sarco/ER Ca2 +-ATPase activity in cancer cells. This study aimed to investigate the correlation between celecoxib-induced ER stress and the effects of celecoxib against cell death signaling. Treatment of human colon cancer HCT116 cells with celecoxib reduced their viability and resulted in a loss of mitochondrial membrane potential ([Formula: see text]). Additionally, celecoxib treatment reduced the expression of genes involved in mitochondrial biogenesis and metabolism such as mitochondrial transcription factor A (TFAM) and uncoupling protein 2 (UCP2). Furthermore, celecoxib reduced transmembrane protein 117 (TMEM117), and RNAi-mediated knockdown of TMEM117 reduced TFAM and UCP2 expressions. These results suggest that celecoxib treatment results in the loss of [Formula: see text] by reducing TMEM117 expression and provide insights for the development of novel drugs through TMEM117 expression.


Asunto(s)
Neoplasias del Colon , Sulfonamidas , Humanos , Celecoxib/farmacología , Sulfonamidas/farmacología , Pirazoles/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Antiinflamatorios/farmacología , Muerte Celular , Apoptosis
19.
Biomedicines ; 10(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625678

RESUMEN

Deep learning is being increasingly applied for obtaining digital microscopy image data of cells. Well-defined annotated cell images have contributed to the development of the technology. Cell morphology is an inherent characteristic of each cell type. Moreover, the morphology of a cell changes during its lifetime because of cellular activity. Artificial intelligence (AI) capable of recognizing a mouse-induced pluripotent stem (miPS) cell cultured in a medium containing Lewis lung cancer (LLC) cell culture-conditioned medium (cm), miPS-LLCcm cell, which is a cancer stem cell (CSC) derived from miPS cell, would be suitable for basic and applied science. This study aims to clarify the limitation of AI models constructed using different datasets and the versatility improvement of AI models. The trained AI was used to segment CSC in phase-contrast images using conditional generative adversarial networks (CGAN). The dataset included blank cell images that were used for training the AI but they did not affect the quality of predicting CSC in phase contrast images compared with the dataset without the blank cell images. AI models trained using images of 1-day culture could predict CSC in images of 2-day culture; however, the quality of the CSC prediction was reduced. Convolutional neural network (CNN) classification indicated that miPS-LLCcm cell image classification was done based on cultivation day. By using a dataset that included images of each cell culture day, the prediction of CSC remains to be improved. This is useful because cells do not change the characteristics of stem cells owing to stem cell marker expression, even if the cell morphology changes during culture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA